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Predictive food

microbiology

Robert L. Buchanan

The need to assure the microbiological safety and quality of
increasingly complex food products has stimulated interest in
the use of mathematical modeling to quantify and predict
microbial behavior. During the past several years there has
been substantial advancement in both the concepts and
methods used in predictive microbiology. Coupled with ‘user-
friendly’ applications software and the development of expert
systems, these models are providing powerful new tools for
rapidly estimating the effects of formulation and storage
factors on the microbiological relations in foods.

During the past 5-8 years, there has been a dramatic
increase in research on the development of mathemat-
ical models that describe how microorganisms behave
in foods. Activity and interest in this area, which has
been termed ‘predictive microbiology’, has been so
widespread that it is now one of the most rapidly
advancing of the sub-specialties in food microbiology.
This interest has been worldwide, with scientists estab-
lishing international collaborative efforts to share the
ideas, concepts, mathematical techniques and databases
that are needed to generate and validate new, more
effective models. The scope of this effort was readily
apparent at the recent ‘International workshop on the
application of predictive microbiology and computer
modeling to the food industry’ organized under the aus-
pices of the Society for Industrial Microbiology (12-15
April 1992, Tampa, FL, USA). This conference, which
brought together microbiologists, food scientists, math-
ematicians, engineers and statisticians from 15 countries,
demonstrated the rate at which this part of food micro-
biology is maturing and gaining acceptance. The purpose
of this Review is to provide an overview of the major
thrusts and applications of predictive microbiology, and
to emphasize the need for continuing international
collaboration.

Historically, food microbiology has always been an
active area for mathematical modeling, though often
food microbiologists do not fully appreciate that a num-
ber of the techniques they routinely use are a form of
predictive microbiology. A pertinent example is the
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calculation of thermal resistances and process times.
These mathematical techniques have become so in-
grained that few food microbiologists give a second
thought to the fact that when they calculate or discuss
D-values, Z-values and F-values, they are employing a
linear mathematical model to describe the exponential
inactivation of bacteria.

There are a number of reasons why there has been a
recent re-emergence of mathematical modeling of
microbiological relations in foods, with three being par-
ticularly pertinent.

(1) The first is the ready availability of powerful micro-
computers. The presence of such computers on most
scientists’ desks, and the accompanying increased
awareness of practical mathematics that comes from
working with software has stimulated exploration into
potential microbiological applications.

(2) The second has been the consumers’ preference for
‘fresher, less processed’ foods. This has resulted in
the development of sophisticated multiple-barrier food
preservation systems in which a combination of factors,
no one of which is sufficient by itself, is used to delay
microbiological spoilage. Therefore, there is a need to
quantify the effects of each of the factors contributing
to the total microbiological integrity of the product.
The use of hazard analysis and critical control point
(HACCP) as a safety management tool, with its require-
ment for setting critical limits for key stages of product
handling, has reinforced the need for effective models.
Without such models, it becomes difficult to deal quan-
titatively with interactions among multiple factors.

(3) The third is the realization that it would be virtually
impossible, both scientifically and economically, to
have quantitative microbiological information on the
hundreds of different variations of each of the thousands
of different foods and food ingredients that are present
in international commerce. However, it is precisely this
quantitative data on the behavior of pathogenic micro-
organisms that is needed to make informed decisions
about the safety of food products. This limitation is
being offset by the realization that there are a limited
number of key factors that account for most of the
behavior of microorganisms in food systems. Through
systematic quantification and understanding of the
impact of these factors in model systems and prototype
products, it is possible to generate effective models that
can estimate microbial behavior in a range of products.
These models can subsequently provide industry with
an important means of making objective initial assess-
ments to establish priorities in relation to both product
design and evaluation. Likewise, such priority-setting
techniques are critical if regul:* agencies are to adopt
risk-based inspection systems.

Within predictive microbiology, there are several
means of classifying models based on either the micro-
biological event studied, the modeling approach



—_
pury

S
T

employed, or the number or type of
variables considered. Models can be
classified broadly on the basis of
whether they describe microbial
growth or inactivation; with the excep-
tion of models of thermal inactivation,
models for microbial growth are gener-
ally more advanced than those for inac-
tivation. Models are also categorized
based on the mathematical approach
used, with the two primary types being
probability-based and kinetics-based
models. Models can also be differen-
tiated on the basis of whether they are
mechanistic or empirical. While it is
generally considered that mechanistic
models are inherently superior, most of
the successful models currently avail-
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Recently, we proposed an additional
classification of models as primary, sec-
ondary or tertiary, based on the types of
variables being described'. Primary
models are mathematical expressions
that define growth or survivor curves describing the
response of an organism over time to a specific set of cul-
tural conditions. Secondary models describe the impact of
cultural and environmental variables on organism growth
or survival characteristics. Using thermal processing as
an example, a survivor curve used to calculate D-values
is a primary model, while a thermal death-time curve
used to calculate Z-values would be a secondary model.
The term tertiary model is used to describe the incorpor-
ation of primary, secondary, or combinations of primary
and secondary models into application programs and
expert systems. Examples of each of the different types of
models are introduced below.

Fig. 1

Mathematical modeling of microbial growth curves

One of the key breakthroughs that has allowed predic-
tive food microbiology to progress rapidly during the
past several years has been the identification of effective
primary models for describing microbial growth curves
in model systems and foods. These models have permit-
ted growth curves to be described objectively as math-
ematical expressions, an attribute that is critical to the
development of secondary models of microbial growth
kinetics. Of particular importance has been the use of
various sigmoidal relationships, such as the logistics and
Gompertz curves. While these relationships have been
used previously to describe other biological processes, it
wasn’t until the late 1980s that a research team from the
AFRC Institute of Food Research in the UK introduced
food microbiologists to their potential as a means of
describing microbial growth?. Since their introduction,
these equations have rapidly changed the way food
microbiologists analyse quantitative growth kinetics data.

The Gompertz equation is a four-parameter double-
exponential function that describes an asymmetrical sig-
moidal curve:

Parameters associated with the Gompertz equation. See text for definitions of parameters.

L,=A + Cexp{—exp[-B(t— M)]}

where L, is log,, of the count of bacteria (number of
colony-forming units; cfu) at time ¢ (in hours); A is the
asymptotic log count as time decreases indefinitely
(approximately equivalent to the log of the initial level
of bacteria); C is the asymptotic log count as time
increases indefinitely (approximately equivalent to the
log of the maximum population density during the
stationary growth phase minus the log of the initial
count); M is the time at which the absolute growth rate
is maximal; and B is the relative growth rate at time M
(Fig. 1). It has been the most widely used of the sig-
moidal functions, with characteristics particularly useful
to food microbiologists>*.

Upon first glance, the equation seems complex.
However, the four parameters can readily be related
mathematically to cultural characteristics familiar to
microbiologists:

U= BClexp(l)
GT = [log,o(2)][exp(1)/BC]
A=M-(1/B)
MPD=A+C

where 41 is the exponential growth rate {[log(cfu/g)}/h};
GT is the generation time (h); A is the lag phase
duration (h) and MPD is the log of the maximum
population density [log(cfu/g)]. The Gompertz equation
can also be reparameterized to use data provided in the
form of growth rates and lag phase durations®.

Coupled with good curve-fitting software, the
Gompertz equation is easy to use. For example, our lab-
oratory employs an iterative, nonlinear regression pro-
gram in conjunction with a minicompuiter to fit exper-
imental data. While some experience and judgement are
needed to optimize curve-fitting routines, we have found




that our technical staff quickly adapted to this approach.
Once trained, an investigator takes ~30s to generate a
growth curve from a set of experimental data.

In addition to the specific applications of sigmoidal
models for describing growth relations, the introduction
of these equations has stimulated a great deal of activity
in relation to defining or describing microbial relations.
For example, it was a direct result of the availability of
these sigmoidal kinetics that stimulated us to postulate a
mathematical approach for defining and calculating the
duration of the lag and exponential growth phases®S.
Likewise, there has been renewed interest in the devel-
opment of new approaches for describing growth under
constant or changing conditions™”.

Modeling the effects of cultural and environmental
conditions on growth

The growth of microorganisms in food systems is
dependent on the effects of (and at times interactions
among) multiple variables. Examples of factors that
influence microbial growth kinetics include temperature,
pH, acidulant identity, water activity, humectant ident-
ity, absorption and desorption isotherms, oxygen avail-
ability, carbon dioxide levels, redox potential, nutrient
content and availability, and the presence of antimicro-
bials. Traditional food preservation techniques typically
involve manipulating one of these parameters so that it
is outside the range that supports the growth of most
foodborne species. For example, increasing the salt con-
tent of foods to greater than 5% retards the growth of
many Gram-negative foodborne bacteria, including a
number of pathogens. As consumers have demanded
foods that are closer to being fresh, products are being
developed that rely on packaging with multiple barriers
to affect several of the factors that influence microbial
growth. Typically, no single variable is altered to such
an extent that it is sufficient by itself to control
microbial growth. Instead, manipulating multiple
variables to a smaller degree produces a total impact
that is sufficient to prevent growth. It is readily apparent
that a large number of combinations of various variables
could be effective. The availability of good models that
integrate the effects of pertinent variables almost
becomes a requirement for the cost-effective design and
production of such products.

Two major approaches, probability-based models and
kinetics-based models, have been used to describe the
impact of various cultural and environmental factors on
the growth of foodborne bacteria. The choice of
approach and the specific application within an
approach are largely determined by the type of micro-
organism and the number of variables. Typically,
probability-based models have been employed with
spore-forming bacteria, while kinetics-based models
have been used with non-spore-forming species.

Probability-based models

Most probability-based modeling has used the general
approach of Hauschild', who estimated the probability
that a single spore of Clostridium botulinum would

germinate and produce toxin in a food. This approach
helps take into account the strong effect that cultural
conditions have on the germination of bacterial spores.
For example, Montville!' reported that almost all
C. botulinum spores germinated in a medium with no
added NaCl and at pH 7.0, whereas only 1/100000
spores germinated when 2% NaCl was presented and at
pH 5.5. Various investigators'>"® have systematically
estimated the effects and interactions of multiple vari-
ables on the probability of germination and growth of
C. botulinum. Regression analysis is used to model the
individual contributions of the variables. More recently,
investigators have incorporated terms that allow esti-
mation of the probability of when a microbiological
event will occur. For example, Genigeorgis et al.'®
modeled the effects of temperature, inoculum size and
percentage brine on the duration of the lag period before
toxigenesis for non-proteolytic C. botulinum types B
and E in cooked turkey:

log,o(LP) = 0.625 + 6.71(1/T ) + 0.0005/T
-0.0337+0.102B - 0.1021

where LP is the lag to toxigenesis (days); T is the tem-
perature (°C); [ is the inoculum size (log,, of the num-
ber of spores) and B is the percentage brine. The model
provided reasonable agreement with experimentally
derived data. Another group, also working with non-
proteolytic C. botulinum, recently developed a new
primary model that incorporates terms for both time and
the relative extent of germination:

P, = Py /(1 + k™)

where ¢ is the time (days); P, is the probability of growth
at time #; P,,, is the maximum probability of growth
over the entire storage period; k is the rate constant
(days™); and 7 is the time to P,,/2 (Whiting, R.C. and
Call, J.E., submitted). This approach was subsequently
used to develop a probability-based model of the effects
of temperature, pH and NaCl concentration on the time
to toxigenesis.

Kinetics-based models

The second broad approach is the development of
models that mathematically describe the effects of
cultural and environmental conditions on a micro-
organism’s growth Kinetics, particularly lag-phase
durations and generation times. These can be modeled
either directly or using mathematical functions such as
the parameters of the Gompertz equation. The complex-
ity of the models required varies with the number and
independence of the variables being considered
simultaneously. While the growth of a microorganism
in a food system is potentially dependent on the
interaction of a range of variables, for many products
growth is overwhelmingly dependent on a single vari-
able. In such instances, it is generally storage tempera-
ture that is the most important factor controlling micro-
biological growth. It is not surprising that a substantial
amount of modeling research has concentrated on this
variable.
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Typically, modeling the impact of temperature using a
simple Arrhenius equation is only accurate for a portion
of an organism’s temperature range. However, modifi-
cations of this approach, as well as other explicit
equations, have been effective. The three most studied
have been the ‘non-linear Arrhenius—Schoolfield’
equation®-?, the ‘linear Arrhenius-Davey’ equation®?*
and the ‘square root’ (‘Ratkowsky-Belaradek’)
models??. The Schoolfield equation and related nonlinear
Arrhenius models were developed to enhance the basic
Arrenhius model to achieve better fits at the extremes of
organisms’ temperature ranges. While reasonably effec-
tive, this six-parameter equation is complex and its use
can be cumbersome.

The ‘square root’ equation is probably the most stud-
ied and widely used of the simple models for the effects
of temperature on microbial growth. Below the micro-
organism’s optimum growth temperature, the square
root of the growth rate constant (R)* and the reciprocal
of the lag phase duration, A (h)*’ are linearly related to
temperature according to the following relationships:

(R)O'S = b(T— Tmin)
(1/2')05 = b(T_ Tmin)

where b is the slope of the regression line; T is the
incubation temperature (K); and T,;, is the notional
minimal growth temperature (K), which is derived
by extrapolating the linear regression line to zero. As
incubation temperatures increase above an organism’s
optimum growth temperature, growth rates begin to
decline. Ratkowsky et al.?® subsequently expanded their
model to include a term that took into account this
depression of growth rate:

(R)* = B(T ~ T i) (1 -7 ~ Tmax))

where T, is the notional maximal growth temperature
(K) and c is a constant. This empirical secondary model
has been shown by a number of investigators to be
effective for estimating the effects of different constant
storage temperatures on the growth of variety of
microorganisms in foods and model systems*-33, One of
the clear advantages of this model is its simplicity, both
in relation to generating models and subsequent appli-
cations. If one limits the temperature range to less than the
optimum range for an organism’s growth, the model can
be generated with simple linear regression techniques.
Zwietering et al.* investigated the effectiveness of
several models for describing the effect of temperature
on the growth kinetics of Lactobacillus plantarum, an
organism for which they had a large database of exper-
imental values. They concluded that two reparameteriz-
ations of the ‘square root’ equation were the most
effective for modeling growth rates and maximum popu-
lation densities, both in terms of fit and ease of use.
However, they concluded that the effect on the lag
phase was better described by a hyperbolic function:

In(4) = p/(T—q)

where 4 is the lag phase duration (h); T is the tempera-
ture (K); p is a parameter that accounts for the decrease

in lag phase duration as temperature is increased; and g
is the temperature (K) at which lag phase is infinite.
Zwietering et al.** used these three equations to develop
a model for predicting the growth curve for L. plan-
tarum Over its entire temperature range.

A third empirical equation used increasingly to model
the effect of incubation temperatures is the linear
Arrhenius-Davey equation?;

In(k) = Cy + C,/T + C,/T?

where k is the growth rate constant; 7 is the temperature
(K); and C,, C,, and G, are coefficients to be determined.
This equation can also be used to model the effect of
temperature on the reciprocal of the lag phase duration*:

In(1/A) = Cy— C,/T + C,IT?

The three coefficients associated with the equation can
be generated readily using nonlinear regression tech-
niques to produce the best-fit curve. Studying the
growth of Listeria monocytogenes on refrigerated beef,
Grau and Vanderlinde*® compared the Davey and
Ratkowsky models and found that both were effective.

The above models were developed based on exper-
imental data from cultures maintained at constant tem-
peratures. Substantially less modeling has been done on
the effects of fluctuating storage temperatures, though
this is currently a very active area of research.
Blankenship er al.*® used a modification of the ‘square
root’ equation to model the effects of cooling schedules
on the growth kinetics of Clostridium perfringens in a
cooked meat product (chili). More recently, van Impe
et al.® presented a dynamic model based on a differen-
tial equation that combines the Gompertz equation, the
Ratkowsky equation and a term to account for the tran-
sition to inactivation when a microorganism is shifted to
an adverse elevated temperature.

When more than one variable has to be considered to
predict the growth rate of a foodborne microorganism,
the type of model employed is dependent on the number
and independence of the variables. If temperature and
another variable are independent of each other, modifi-
cations of the Ratkowsky and Davey equations are
effective. For example, McMeekin et al.’’ studied the
combined effects of water activity (a,; parameterized as
NaCl concentration) and temperature on the growth of
Staphylococcus xylosus. They found that at each a,
tested, the relationship between growth rate and
temperature (below the optimum growth temperature)
could be described by the ‘square root” model, with T,
remaining constant. The combined effects of the two
variables could be described by a simple muliplicative
expression:

RO'S = b(T— Tmin)(aw — 4y min)u5

Chandler and McMeekin®® obtained similar results when
the a,, of S. xylosus cultures was adjusted using glycerol,
and concluded that the slope and a,,;,, but not T,
varied with the identity of the humectant. Adams et al.*°
examined the combined effects of pH and suboptimal
temperatures on the growth kinetics of Yersinia



enterocolitica. They found that the two variables were
independent and could be expressed as:

RO-S = b(T— Tmin)(pH - pI—Imin)O'5

The notional pH,,;, was dependent on the identity and
concentration of the acidulant, and would likely be
influenced by the buffering capacity of a food system.
Davey®* provided an expanded version of his equation
that examined the combined effects of temperature and
water activity:

In(k) = C, + C/T + C,/T? + Csa, + Cy(a,)?

Grau and Vanderlinde® used multiplicative expansion
of both the Ratkowsky and Davey equations to model
the effects of temperature and pH on the growthr of
L. monocytogenes on beef tissue.

While it is assumed that additional variables could be
included using the above approach, response-surface
techniques have been the primary method for develop-
ing models for more complex foods that are dependent
on four, five or more primary variables, particularly if
the variables are interactive. This approach employs
regression analysis techniques to generate the best-fit,
multidimensional response-surface equations that de-
scribe the effects and interactions of the experimental
variables. Investigators have successfully employed
this empirical approach to develop four- or five-
variable models for a number of foodborne pathogens,
including C. botulinum?, Salmonella spp.*’, Listeria mono-
cytogenes®, Aeromonas hydrophila™®, Shigella flexneri*',
Y. enterocolitica®®, Staphylococcus aureus and Escherichia
coli 0157:H7 (Buchanan, R.L. et al., submitted).

Modeling microbial inactivation

There is an extensive knowledge base on the thermal
inactivation of microorganisms in foods, including a
number of effective empirical and mechanistic models.
However, there is surprisingly little systematic data on
the non-thermal inactivation of bacteria resulting from
the manipulation of other food formulation parameters,
such as pH, water activity or the presence of anti-
microbials. Parish and Higgins* reported that when L.
monocytogenes was placed in orange serum adjusted to
pH 3.6-4.8, the lag period before the initiation of inacti-
vation was linearly related to pH, and could be modeled
accordingly. Also using L. monocytogenes, our labora-
tory (Buchanan et al., submitted) found that in a micro-
biological medium adjusted to a pH < 5.5 with HCI, the
time to achieve a ‘4-D’ (10*-fold) inactivation (¢,,) was
linearly related to pH and could be described by:

t,p = m(pH — pHy)

where m is the slope of the regression line and pH, is
the notional pH for instantaneous inactivation based on
extrapolating the regression line to ¢ = 0. The values
obtained for m and pH, were 197.3 and 2.67, respectively.

The effect of two monocarboxylic acids (lactic acid
and acetic acid) on the inactivation of L. monocytogenes
was also determined (Buchanan et al., submitted). We
found that the rate of inactivation was dependent on the

identity of the organic acid, its concentration, and the
pH of the system. The logarithm of ¢, , was found to be
linearly related to the square root of the concentration of
undissociated acid. This allowed the development of the
following equation:

_ Tlexp[(pH-pK)/2.303] )0-5 ]
tip= exp{2-303[’"(1 T expl(pH-pK)2.303]) *?

where, for each acid, T is the total concentration (mm)
of organic acid; m is the slope of the regression line; and
b is the y-intercept of the regression line. Additional work
on the development of response-surface models for the
effects of multiple variables on the non-thermal inacti-
vation of L. monocytogenes and Salmonella typhi-
murium are currently being completed*’.

Applications

Once models have been developed and validated, a
key to their successful use is reducing their operation to
a ‘user-friendly’ form. The widespread availability of
microcomputers that has helped stimulate interest in
microbial modeling is also an important tool in devel-
oping such ‘user-friendly’ applications. For example,
our laboratory has developed application software
to demonstrate the potential usefulness of predictive
microbiological approaches*. The program, which is
currently in its fourth version, automates the use of
available response-surface models for the effects of
storage temperature, initial pH, NaCl content (a,), s0-
dium nitrite concentration and oxygen availability on the
growth of foodborne pathogens, including Salmonella
spp.*, L. monocytogenes*', A. hydrophila**, S. aureus
(Buchanan et al, submitted), E. coli 0157:H7
(Buchanan et al., submitted) and S. flexneri*. The soft-
ware has been distributed extensively to industry, gov-
ernment and academia, and is being used to provide
“first estimates’ of the behavior of pathogens in food, for
applications in both designing and evaluating products.
Likewise, the software has proved to be a useful tool for
teaching food microbiology.

As available knowledge of microbiological modeling
and applications approaches becomes more extensive,
the simplicity, flexibility and usefulness of application
software will be enhanced significantly. One of the
approaches that will be particularly important is the use
of ‘expert systems’. This computer modeling technique
formalizes the thinking processes of experts in a field
such as food microbiology, coupling this with objective
tools such as mathematical modeling. This permits the
user of the system to have available for immediate use
both objective predictors and the experience of experts.
Several corporations are currently developing im-
pressive expert systems for assessing microbiological
relations within food products. Likewise, the UK
Ministry of Agriculture, Fisheries and Food has devel-
oped and recently gone online with ‘Food Micromodel’,
an extensive expert system/database for food microbiol-
ogy. While the database is physically located in the UK,
subscribers can interface with the computer via the tele-
phone to query the system from anywhere in the world.



Concluding remarks
There is a great deal of excitement among researchers
in predictive microbiology in relation to the future. New

techniques and findings are being reported almost weekly,

and this is likely to accelerate as a developing inter-
national network of scientists begin to collaborate and
share databases. It seems reasonable to predict that the
next five years will see the introduction of increasingly
more comprehensive computer-based models and expert
systems. This should be enhanced by the introduction of
dynamic modeling techniques similar to those employed
by engineers to study processing operations. Ultimately,
it should be possible to produce an integrated dynamic
model that could follow the microbiological impact of
each of the different steps associated with the pro-
duction, distribution and retailing of a food. Such a tool
would be an obvious benefit to efforts to introduce and
operate HACCP-based food safety systems.

One of the factors that has enhanced the rapid devel-
opment of predictive microbiology has been the high
degree of international cooperation among researchers.
This is going to become even more critical as models
are expanded to include additional variables. Data col-
lection becomes a limiting factor when interactions
among a large number of variables must be considered,
and models are only as good as the quantitative data
available. Likewise, there is increased need to enlist
various laboratories evaluating different types of foods,
to help validate the effectiveness of different models.
Hopefully, there will be further efforts to enhance the inter-
national exchange of modeling concepts and databases.

Predictive microbiology techniques should be a boon
to food microbiologists, allowing them to rapidly explore
the microbiological impact of varying conditions within
a food. Likewise, the development of expert systems will
‘provide a means of making their knowledge readily
available to other segments of the food industry, freeing
their time for handling the more complex questions.
However, care has to be exercised in relation to empha-
sizing to users that the models are only a means of pro-
viding rapid ‘first estimates’ of microbiological behav-
ior. Models are not a substitute for good laboratory
support. Instead, they are a means of allowing a laborato-
ry to function more effectively. This new area of food
microbiology research will undoubtedly provide a pow-
erful set of new tools that will allow us to get one step
closer to the long-term goal of being able to design
microbiological quality and safety into food products,
instead of attempting to introduce these attributes after
the fact through end-product testing and inspection.
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