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ABSTRACT: Predictive food microbiology is a field of study that combines elements of microbiology, mathemat-
ics, and statistics to develop models that describe and predict the growth or decline of microbes under specified
environmental conditions. Models can be thought of as having three levels: primary level models describe changes
in microbial numbers with time, secondary level models show how the parameters of the primary model vary with
environmental conditions, and the tertiary level combines the first two types of models with user-friendly
application software or expert systems that calculate microbial behavior under the specified conditions. Primary
models include time-to-growth, Gompertz function. exponential growth rate, and inactivation/survival models.
Commonly used secondary models are response surface equations and the square root and Arrhenius relationships.
Microbial models are valuable tools in planning Hazard Analysis, Critical Control Point (HACCP) programs and
making decisions, as they provide the first estimates of expected changes in microbial populations when exposed
to a specific set of conditions. This review describes the models currently being developed for food-borne
microorganisms, particularly pathogens. and discusses their uses.
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I. INTRODUCTION
A. Modeling

The objective of predictive food microbiol-
ogy is to deseribe mathematically the growth or
decline of food-borne microbes under specific
environmental conditions. With this ability to
describe comes the ability to predict for combi-
nations of conditions where no experimental
data exist within the appropriate range of each
condition. This environment includes both in-
trinsic factors (e.g., pH, a,) and extrinsic fac-
tors (e.g., temperature, gaseous atmosphere). A
large number of factors undoubtedly affect the
microorganism; however, in most foods only a

few exert most of the control over a micro-.
organism’s growth or decline. The effect of a
factor is assumed to be independent of whether
the microbe is in a broth or food (assuming
other relevant factors are equivalent).
Microbial modeling began in the 1920s with
thermal death time calculations; D and z values
were used successfully to ensure that canned
foods were free from risk of food poisoning by
Clostridium botulinum. With the advent of per-
sonal computers (PCs), microbial modeling be-
came an area of increasing interest because a
mode!l can now be used easily by food tech-
nologists and microbiologists; predictions are
literally at their fingertips. Before the PC, only
relatively simple models were developed; the
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CFU/ml); P, probability: P,,,.. maximum probability: pH. acidity on pH scale: 4. number of samples that failed to grow or show
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T, Optimum temperature: T,,.. maximum temperature: T, . minimum temperature: X,. factors of a secondary model
(temperature. pH. a,): Y. calculated value for secondary model: p. growth rate: T. time when function has an inflection point.



extensive effort necessary to create a multifac-
tor model was not justified by the limited use it
would receive.

Although modeling does not usually reveal
unexpected microbial behavior, it does quan-
tify the effects from the interactions between
two or more factors and allows interpolation of
combinations of factors not explicitly tested.*®
Much of the food microbial literature before
the advent of predictive modeling defined the
limiting conditions for growth when all other
factors were near their optimum.>’ However, in
many foods, practical control of pathogens de-
pends on a combination of preservative factors,
with none of the factors at levels capable of
inhibiting the microorganisms by themselves.
Mathematical models are the best way to make
predictions in these circumstances.

This article surveys recent advances in the
field of microbial modeling of interest to food
microbiologists. Primary emphasis is on the
development of various models and modeling
techniques; less attention is given to describing
papers that use existing models. Earlier®¢%82
and less extensive'®33!17 articles have re-
viewed this rapidly advancing field. The pro-
ceedings of the recent International Conference
on the Application of Predictive Microbiology
to the Food Industry*’ includes monographs by
many of the leaders in modeling. McMeekin et
al.’*® have authored a book that presents the
theory and practice of predictive microbiology.
This review does not consider the field of fer-
mentations or biotechnology where extensive
literature exists.'™!"**"! Fermentation models
usually are concerned with substrate or product
concentrations. whereas the models described
in this review are usually concerned with cell
numbers and preservative factors like tempera-
ture, pH, and a,.

B. Classification of Models

Several schemes have been proposed to cat-
egorize microbial models. In this article, the ini-
tial differentiation will be into growth models and
inactivation/survival models. Within each cat-
egory, models are described as being at the pri-
mary, secondary, or tertiary level.2%

1. Primary Level Models

Primary level models describe changes in
microbial numbers or other microbial responses
with time. The model may quantitate colony-form-
ing units per milliliter (CFU/ml), toxin formation,
substrate levels, metabolic products (which are
direct measures of the response), or absorbance or
impedance (which are indirect measures of the
response). A mathematical equation or function
describes the change in a response over time with
a characteristic set of parameter values. Examples
of primary models are the exponential growth
rate, Gompertz function, and first-order thermal
inactivation. The parameters may, in turn, be re-
formulated into derived parameters, such as the
Gompertz lag time or generation time.

2. Secondary Level Models

Secondary level models describe the responses
by parameters of primary models to changes in
environmental conditions such as temperature, pH,
or a,. Examples of secondary models are the re-
sponse surface equation, Arrhenius relationship,
and square root model.

3. Tertiary Levels

Tertiary levels are computer software rou-
tines that turn the primary and secondary level
models into “user-friendly” programs for model
users in the forms of applications software and
expert systems. These programs may calculate
microbial responses to changing conditions, com-
pare the effects of different conditions, or contrast
the behavior of several microorganisms.

Primary and secondary level models can be
characterized as linear or nonlinear, segregated
(defined population of heterogeneous cells) or
nonsegregated (averaged cells), or structured (mul-
ticomponent) or nonstructured (single compo-
nent).®'%36* These models may also be described
as purely descriptive (empirical) or based on mi-
crobiological criteria (mechanistic, kinetic).

The modeling process depends on regression
techniques; therefore, the standard criteria for
regression analysis must be taken into consider-



ation, including normal distributions and homo-
geneous variances. Guidelines for developing
models include considerations of:

Accuracy of fit

Ability to predict untested combinations of
factors

Incorporation of all relevant factors

Possessing the minimum number of parameters
for ease of use (parsimonious)

Specification of the error term

Parameters having biological meaning and realis-
tic values

Reparameterization if it improves statistical prop-
erties'40

Il. MODELING INCREASING
POPULATIONS

Perhaps the simplest situation to model was
growth vs. no growth. Bell and Etchells?® ob-
served the concentrations of acetic acid and sugar
that prevented the growth of spoilage yeasts in
pickles. Equations were determined to calculate
the quantities of acid or sugar required to prevent
the yeast’s growth.

A. Time-to-Growth Modéls

A model where the time from inoculation to
growth/turbidity or toxin formation is the meas-
ured parameter can be more informative than the
growth/no growth model. This model was used
extensively for C. botulinum, which originates
from spores and produces a potent neurotoxin.”’-%
The rates of growth and toxin formation were
relatively unimportant compared with predicting
the time for germination/outgrowth or the initial
appearance of toxin. Some workers simply noted
the time for turbidity'?® or toxin'’>!"* and drew
block figures indicating positive conditions.

Time-to-growth primary models were incor-
porated into several types of secondary models.
Smith et al.'8° used a second-order response sur-
face equation to predict the effects of a,. pH.
storage temperature, potassium sorbate, carbon
dioxide headspace concentration, and inoculation
level on the number of days for visible mold

growth on bakery products. The time to detect-
able C. botulinum toxin in fresh fish stored be-
tween 4 and 30°C under modified atmosphere
packaging for up to 60 d was modeled by a poly-
nomial equation.'® The time for botulinal toxin
formation in vacuum-packaged, cook-in-bag tur-
key products at an abuse storage temperature of
27°C was fitted to quadratic equations, with so-
dium lactate and sodium chloride as the indepen-
dent factors.!?":128

The most probable number (MPN) technique
was utilized in a time-to-turbidity model when
serial dilutions of spores were inoculated into
defined media by Lindroth and Genigeorgis.'?
Using the pattern of turbidities in the dilution
series and the MPN tables, the probability of a
single spore germinating and growing to cause
turbidity was determined at each time period. The

. probability of growth by a single spore at a par-

ticular time was defined as
P (%) = (MPN x 100)/s (nH

where P was the probability in percent, MPN the
most probable number of grown spores, and s the
inoculum size.

Cooked potatoes with altered pH and added
sodium chloride were inoculated with proteolytic
C. botulinum and vacuum packaged.’’ The per-
cent probability of toxin production with storage
at 25°C was determined by serial inoculations
and MPN tables by Equation 1. Multipleregres-
sion equations were calculated to predict the time
for toxin formation and the probability of toxin
formation by a single spore at a specified condi-
tion.

Probability of C. botulinum growth and toxin
formation in broths at different pHs was modeled
by the equation®'

P = (In n/q)/s )

where n was the total number of inoculated
samples, q was the number of samples that failed
to show growth or toxin, and s was the number of
spores inoculated into each sample. The interac-
tions of modified atmosphere packaging, irradia-
tion, and storage temperature on C. botulinum in
fresh pork were modeled with Equations 1 and 2
and second-order polynomial equations.®®



Changes in log P with time were calculated
by

cClog P (%) = 5[e¥/(1 +eY)] -3 3)

where Y was a function of temperature, days,
and lag period.’®!2° The change in the logarithm
of the probability with temperature was described
by a cubic regression equation for Y (secondary
model). Separate equations for Y were devel-
oped for vacuum, 100% CO,, and 70% CO,
modified atmosphere packaging. This approach
modeled a variety of situations for C. botulinum
toxin production in fish!!-12.7475.104.107 and cooked
turkey.”® The effects of redox potential, sodium
chloride, temperature, and pH on the probability
of growth in broth cultures were explored in a
series of papers.'?3-126 In these papers. the change

in log P with time was fitted to a linear func- .

tion!23
logP=a, - k(t,,, -t 4)

where a, was the maximum value, k was the
slope, t,,, was the time to reach a maximum
value, and t was the incubation time.

Roberts et al.!*8-1" described the proportion
(p) of meat slurry samples that were toxic after
inoculation with C. botulinum by

Y = (180/m) arcsin (p'?) 5)

where Y was a polynomial equation that included
terms for sodium chloride. nitrite, nitrate,
isoascorbate, polyphosphate. and heating and stor-
age temperatures. Roberts et al.'™ expanded the
meat slurry model by use of a logistic regression
function

p= Ul +e) (6)

where Y was a polynomial with no squared terms.
High and low pH pork had separate equations.
The polynomial for Y had squared terms (second-
order) in Roberts et al.'”! and in subsequent pa-
pers 8384173

The effect of pH. fructose concentration
(°Brix), benzoic acid, sorbic acid, and sulfur di-
oxide on the probability of growth of a spoilage

yeast, Zygosaccharomyces bailii, in a model fruit
drink after 3 weeks at 23°C was modeled with the
logistic probability function and a polynomial
equation.’’

P=1/(1+¢eY) @)
Y =a, +aX; + a,X;, + 2%, . . 8)

. The probability of finding Campylobacter in
water as a function of temperature and the pres-
ence of indicator fecal coliforms was modeled by
a logistic function'®

P=eY/(l +¢Y) 9)

where P was the probability of the occurrence
of the Campylobacter, Y = —-4.38 + 1.62 log
(FCB) + a,,,- FCB were the counts for fecal
coliforms, and the value for a,.,,, varied, de-
pending on which of four temperature ranges
from O to 12°C the prediction was in. At a
measured water temperature, the probability of
occurrence of Campylobacter had a sigmoidal
relationship to the logarithm of the indicator
coliform numbers.

The pattern of toxic samples in a set of pack-
ages inoculated with clostridial spores and stored
under abuse conditions was characterized as an
initial period without any toxic samples, a period
of increasing numbers of positive samples, and
then no additional positive samples.!%-% Whiting
and Call*” modeled the increasing probability of
positive samples of proteolytic strains of C. botu-
linum in broth tubes by a logistic function.

P=P,.,/(1+er-1) (10)
where P was the probability of a sample being
positive (0.0 to 1.0), P,,,, was the maximum prob-
ability of being positive at the end of the model-
ing period. k was the slope term for the rate of
increasing positive samples. T was the time of the
inflection point where P equals half of the P,
and t was the time. Polynomial regression equa-
tions were then calculated for each of the three
parameters (P,... k. and 7) to describe their changes
with sodium chloride (0 to 3%), pH (5 to 7) and
temperature (15 to 37°C). '



B. Growth Models
1. Primary Growth Models

Precomputer modeling was often performed
by plotting the logarithm of cell numbers per
milliliter with time. The slope of the portion of
the growth curve judged to be linear [log,, (CFU/
ml)/h] was a first-order relationship

N, = N ekvin2 (11)

where N, was the log population per milliliter at
a specified time, N, was the log initial population
per milliliter, k was the slope, and t was time. The
readily calculated version of this model is

k=[logN,-log NJ/(t,—t)  (12)

Baranyi and Roberts'® pointed out that the
growth rate properly refers to the increase in num-
bers per time (dM/dt) and the commonly referred
to growth rate is correctly termed the specific
growth rate.

g = (dM/dtyM = d(In M)/dt = d(log,, M)/2.3 dt
(13)

This relationship (Equation 12) was fitted by lin-
ear regression to describe the growth of Myco-
bacterium,"'8 growth of Listeria in milk'* at 10°C,
effects of modified atmosphere packaging on the
growth of normal flora and Listeria monocytogenes
on raw chicken,2!® and the influence of tempera-
ture and pH on the aerobic growth of L.
monocytogenes on beef lean and fatty tissue.”
The lag phase was incorporated into the model
by Zamora and Zaritzky*" and Bailey and Ollis.*

M = M exp(u(t - t))) (14)

where p was the growth rate during the exponen-
tial phase (dM/dt = uM). and t, was the lag time.

Additional models have been developed for
describing growth data. Pruitt and Kamau'®' ex-
plained the relationships between exponential.
Gompertz, and logistic functions. The Gompertz
equation has become the most widely used pri-
mary model for describing microbial growth. In

the first use of this function in food microbiology,
Gibson et al.8 compared the logistic and Gompertz
curves for parameterizing the growth of C. boru-
linum, preferring the closer fit by the Gompertz

‘equation. The equation is

N, = N, + a;exp(—exp(-a,(t-1)))  (15)

where a, was the difference in log,, counts be-
tween the inoculum and the stationary phase, a,
was a slope term, and T was the time at the inflec-
tion point.

The parameter values can be determined by
fitting the data to the Gompertz function by
Gauss-Newton or other iterative estimation pro-
cedures that determine the best-fit according to
least squares criteria. Bratchell et al.”’ exam-
ined the number of data points in a growth
curve and the resulting errors of the fits. They
suggested that more than ten data points per
curve were necessary for good fitting. Buchanan
et al.3 found that the stationary phase popula-
tion of L. monocytogenes was constant at 102
for nearly all combinations of sodium chloride,
nitrite, pH, and temperatures, allowing the sub-
stitution of

a,=92-N, (16)

Secondary models needed to be derived only for
parameters a, and T because the model user pro-
vides the initial populations (N,). Gompertz equa-
tion parameters can be used to calculate param-
eters more familiar to microbiologists that are
independent of the inoculum size.*!

Growth rate log,, (CFU/ml)/hr = a,a,/e a7
Lag time (hr) = T - (1/a,) (18)
Generation time (hr) = In2(e)/a,a, (19)

Another way to calculate the lag phase was to
determine when the second derivative of the
Gompertz function equals zero.*> Zwietering et
al.2'7 compared these methods to calculate lag
phase and the time a culture was in the exponen-
tial growth phase. They found the traditional
Gompertz and second derivative to be slightly



different, for lag times the second derivative
method was equal to

lag time = T — (0.96/a,) 20)

Zwietering et al.?!° statistically compared dif-
ferent sigmoidal functions for describing the
growth of Lactobacillus plantarum. After con-
trasting the logistic, Gompertz, Richards, Schnute,
and Stannard functions, they concluded that the
Gompertz function was statistically sufficient to
describe the growth and was the easiest to use.

The Gompertz function was reparameterized
by Zwietering et al.2!32!6 to have the parameters
directly represent the growth rate and the lag
phase

In(M/M,) = aexp{-exp[(ne/a,)(t, - t) + 1 ]}
: (21)

where a, was the log difference in cell numbers
from inoculum to stationary phase, g was the
maximum specific growth rate, and t, was the lag
time. These parameters can be converted to the
parameters of the previous form of the Gompertz
Equation 15 by

Gompertz a, = pe/a, (22)
Gompertz a, = (ue/a)t, + 1 (23)

Equation 21 was used to fit Aeromonas hyvdrophila
. growth curves.!2 Garthright’® further refined the
function to have

a = Nmax -4, (24)

where N_ ., was the stationary phase. and the
lower asymptote was now defined by

a, = log(N,) - y(0) (25)

The incorporation of y(0) into the model gives an
unbiased approximation of N,. Garthright noted
that the Gompertz function had several inherent
characteristics: the T time occurred when growth
was-at 0.37 a,, and the lag time ended when the
population equaled a, + 0.066 a,.

The logistic function is similar in shape to the
Gompertz, only symmetrical.!’

M, = a5 + [ag/(1 + exp(T — t/g)] (26)

where M, was the population at time t measured
in optical density units, a; was the value of the
lower asymptote (= M,), a, was the maximum
population, T was the time at the inflection point,
and g was the generation time. Another version of
the logistic function was developed by Lambrecht
et al., who measured “CO, release.!® The logistic
function was found to fit plate count data less
closely than the Gompertz function by Gibson et
al.%® for C. botulinum.

Another approach to determine the growth
rate was to observe the time to turbidity of tubes
containing varying concentrations of a microor-
ganism.>® The slope of the time to turbidity vs. log
of the inoculum size was linear with the following
relationship

tmrb =4+ (Nturb - No)/k (27)

where t,,, was the time to turbidity, t, was the lag
time, N, was the population when turbidity was
observed, N, was inoculum (N, < N,,,;), and k was
the growth rate constant from the slope of the
line. The value for k was determined from the
times for two inocula to become turbid.

k = (Ng; = Nl (tymz = turst) (28)

The values for t, and N, were not needed. In this
approach, it was assumed that lag time was not
affected by the inoculum size.

Several authors constructed models built on
assumptions about microbial growth. These mod-
els also addressed several criticisms of the
Gompertz function, principally: (1) the actual
exponential growth is linear (constant specific
growth rate), not a continuous curve with an in-
flection point at the maximum growth rate, and
(2) the curve fitting routine frequently calculates
a negative lag time.

Baranyi et al.'>!7 constructed a model begin-
ning with a basic growth model

dM/dt = py, M (29)
where dM/dt was the change in population with

time, M was the cell population, and py, was the
specific growth rate. The specific growth rate was



greatest at time zero and declined to zero at M,
(stationary phase). In Baranyi et al.,'>'7 modifica-
tion of the lag phase reflected the time necessary
for a cell to adjust to the new environment; the
greater the change from old to new environment,
the longer the lag phase. This transition was mod-
eled by

dMrdt = oy, vy M (30)

where 0, was termed the adjustment function
whose value depended on the environmental
change. Its initial value was small for large changes
and it increased with time to eventually reach a
value of 1.0. Therefore, the term Wy, became the
potential specific growth rate and o, the ac-
tual specific growth rate. Generally, the smaller
the initial value of o, the longer the lag phase and
the slower initial growth rate. The adjustment
function was expanded based on concepts from
Michaelis-Menten kinetics to have a lag time
parameter (A) and a curvature parameter set to 4.
This model described a lag and exponential growth
phase.

To add the stationary phase, these concepts
were incorporated into a logistic curve.

N, = N, = In[1 + (exp(Np,, — No)-1)exp(—f ., A(U)]
(31)

where N, was logarithm of population, N, was the

logarithm of initial population, N, was the loga-
rithm of the maximum population, |, was the
maximum specific growth rate, and A(t) was the
definite integral of the adjustment function.
This four-parameter model fitted growth data
better than the Gompertz function as judged by
goodness-of-fit and standard errors of the esti-
mates. The value for the lag time parameter (A)
was close to the time that the second derivative of
the Gompertz function was at a maximum. This
model did not give negative lag periods and had
an essentially linear exponential growth phase.
The fits of a set of Listeria growth data by this
function estimated the growth rate to be about
10% slower than those determined using the
- Gompertz function. This discrepancy was attrib-
uted to the Gompertz slope being too steep at the
inflection point relative to the entire exponential
phase slope. The concept that the duration of the

lag phase was partially dependent on the previous
environment was very important in this model.
This model was used to determine that the dou-
bling times for type B C. botulinum ranged from
42.3 h to 22 min at 3.9 to 35°C, respectively.”

Whiting and Cygnarowicz-Provost?® con-
structed a growth and decline model by assuming
that spore germination, lag phase, or recovery
from injury was a first-order process or that the
apparent rate was controlled by a single first-
order step. This had a k, parameter describing the
rate

M; = M, exp(k,t) (32)

where M, and M; were the populations for the
initial and activated cells. The exponential growth
rate was.

M, = M, 200 (33)

where M, was the population of actively growing
cells and g was designated as the generation time.
The generation time was shortest at the beginning
of growth and increased with accumulating toxic
metabolites or depleting substrates. The increase
was proportional to the sum of the populations at
each time period from t, to t.

- g=a,+a, X (population X time) ~ (34)
where a, was the basic generation time and a; was
the sum-growth parameter. The sum of the popu-
lation over time did not significantly affect the
generation time (g) until the stationary phase was
approached, ca. 1 log cycle below the maximum.
This resulted in a linear exponential growth phase
when the log of the population was plotted for this
model in contrast to the Gompertz function, which
was continuously curving. At the maximum popu-
lation. g reached a large value. The decline after
the maximum population was assumed to be first-
order.

M, = M exp(k,t) (35)

where M, was the number of dead cells and k,
was the death rate parameter. This model was
shown to describe the germination, growth, and
decline of C. botulinum and growth of L.



monocytogenes. The growth rates were found to
average 16% less than those determined with the
Gompertz function. A second version of this model
had the first-order decline apply to both the in-
oculum (M, ) and growing cells (M). In this form,
the model described a series of environmental
conditions, such as increasing NaCl levels, where
the microorganism changes from growth to de-
cline. Jason!% proposed a model where the growth
of each bacterium was accompanied by the pro-
duction of a constant amount of toxic end-prod-
ucts. The growth rate declined in proportion to the
ratio of the accumulation of these substances to
the mass of nutrients, assuming the nutrient sub-
strates were not limiting.

Another model where population was a bal-
ance between growth and death was proposed by
Jones and Walker.!"™ The population was

M, - Mﬂ 2 (Ylt-Y2o (36)
with

Y, = a,[1<(1 + (Va,) + (Va,)* + (V/a,)/6) exp(?t/as)]
37

representing a growth function and

Y, = exp((t-a,)/as) — exp(—(t-a,)/as) — exp(-a,/as)

+ exp(a,/a;) (38)

representing a death function. where a, to a5 were
parameters, M, was the population. M, was the
initial population. and t was time. This model
accurately fitted the growth and decline of Yersinia
enterocolitica in broths of varying pH and so-
dium chloride concentrations stored at different
temperatures. The mean square errors of this model
were lower than those of the Gompertz function,
Equation 15.

A descriptive model for the influence of en-
vironmental conditions on mold growth and afla-
toxin production assumed that the rate of growth
was proportional to the net growth rate plus
current concentration of mold.'** The growth
rate was the optimal rate multiplied by a series
of factors for temperature. a,. pH, and mold
mass. An Arrhenius-like function was postulated
for temperature. a linear function for a,, a para-
bolic model for pH. and a Monod model for

colony size. Toxin formation was related to the

- production of new cell mass, and toxin degrada-

tion was proportional to the dead cell mass
(degradative enzymes released during mycelial
lysis).

2. Secondary Growth Models

Secondary models determine the parameter
values of the primary models for different envi-
ronments. The three approaches most frequently
used with growth models were the response
surface equation (multiple polynomial),
Arrhenius relationship, and square root model
(Bélehradek). The response surface model is a
regression equation that is fitted using standard
regression techniques and may contain linear,
quadratic, cubic, or reciprocal terms and in-
cludes interaction or cross product terms. Fre-
quently, the logarithm of a parameter gives
better fits (smaller error sums of squares). The
full form of the equation may be presented, or
backward partial regression techniques may sim-
plify the equation to the statistically significant
terms. This equation is entirely descriptive of
the particular data set used to calculate the equa-
tion and does not imply any theoretical or
mechanistic relationship.

An example of a simple linear relationship
was reported by Spencer and Baines!® for the
spoilage of fresh fish. They found that for the
temperature range of —1 to 25°C, the rate of spoil-
age was described by the equation '

k = k(1 +aT) (39)

where k was the rate of spoilage at a temperature
T. k, was the spoilage rate at 0°C, and a was the
linear constant.

Second-order response surface or multiple
regression equations were used frequently for
secondary modeling when many factors influ-
enced the primary model. Roberts et al.'”® mod-
eled the Y parameter of the logistic model

P=1/(1 +¢Y) (40)

by a polynomial equation with no squared terms.
A second-order equation for Y was used by Rob-



erts et al.!”! and Robinson et al.!”> Polynomial
equations for the Gompertz a, and T parameters
were calculated for the effects of pH, sodium
chloride, and storage temperature on the growth
of Salmonella.' Bratchell et al.?® compared
graphical models of the Gompertz parameters by
simple linear regression, contour, and three-di-
mensional surface plots. Hudson'® fitted qua-
dratic and cubic equations; the latter models had
larger R? values, but were not necessarily con-
sidered to be the “best” without verification with
additional data.

Buchanan et al.*> began a series of papers by
the U.S. Department of Agriculture that utilized
the Gompertz function to model the growth of
food-borne pathogens. Polynomial equations to
describe the effects on the a, and T parameters
from aerobic-anaerobic atmosphere, pH, sodium
chloride level, sodium nitrite, and storage tem-
perature on L. monocytogenes were calculated.
These were followed by equations for In(a,) and
In(t) with cubic terms.*! Palumbo et al.!>? per-
formed quadratic and cubic fits to the natural log
and square root of both a, and T values from A.
hydrophila data. From the results, it was con-
cluded that the best fit was the natural log-qua-
dratic equations because these did not calculate
negative lag times, negative generation times, or
occasional poor predictions as did the other equa-
tions, even though the equation did not give the
highest R? values. The natural log-quadratic
model was also used to model the growth of
L. monocytogenes at refrigeration temperatures;*
A. hydrophila under aerobic conditions.'*! anaero-
bic conditions, 52 and with organic acids:'* Shi-
gella flexneri;*22'> Bacillus cereus:*' Staphylo-
coccus aureus;** Escherichia coli O157:H7:%
and Salmonella.'*

The Arrhenius relationship. the logarithm
of the rate vs. the reciprocal of the temperature
(K), has wide use in physical chemistry. When
applied to microbiology. the basic model as-
sumes that the growth rate is governed by a
single rate-limiting enzymatic reaction. Specific
growth rates were measured by turbidity increases
at various temperatures for 12 bacterial strains
and plotted as Arrhenius profiles.'** A simple
smooth curve with a single slope at suboptimal
temperatures was observed for some bacteria
and a curve with two distinct slopes at subopti-

mal temperatures was observed with others. The
latter relationship generally occurred with bac-
teria having T,, > 37°C. However. Reichardt
and Morita!®” reported that Arrhenius profiles

for psychrophilic and psychrotrophic bacteria

also had profiles with two distinct slopes at sub-
optimal temperatures.

Schoolfield et al.'®! reformulated earlier equa-
tions into one suited for biological temperature-
dependent rate models. The model features inac-
tivation at high temperatures and a two-slope or
broken activation curve below the optimum tem-
perature. Stannard et al.'*! cited other efforts to
model microbial growth with the Arrhenius equa-
tions; various authors had reported linear or two-
phase relationships. Zwietering et al.?'" tested
the Schoolfield and Hinshelwood versions with
u determined by the modified Gompertz func-

_ tion and found that these equations satisfactorily

described the data. The Schoolfield model was
used successfully in ultra-high temperature
(UHT) milk with lowered a, by addition of p-
glucose for S. aureus and S. typhimurium.* This
model was then expanded to include pH.** The
lag phase was estimated, and both the lag and
generation times were described effectively by
modified nonlinear Arrhenius equations.

A natural log transformation of the School-
field model without the enthalpy term for the
low temperature inactivation of the enzyme (four
parameters) had lower sum of squares error than
the standard six-parameter model.” The former
equation’s variance was not significantly higher
than the natural log, transformed, six-parameter
model. The transformed four-parameter model
was considered superior to the original School-
field model because it was more parsimonious
and had smaller confidence limits (larger param-
eter t-values).

An additive Arrhenius model was described
by Davey®

In k = -E/RT + a,(pH)* + a,(pH) + a; (41)

where E was the enthalpy: R was the gas constant:
T was the temperature in K: and a,, a,. and a, were
model parameters. A linear Arrhenius model for
the effect of temperature and a, was determined
in foods by Davey™* to satisfactorily predict
growth rates.



In (k) = a, + a,/T + a,/T? + a;a,, + a,a; (42)

where k was the growth rate and a, were model
parameters. The lag phase duration was modeled
by a similar function®’

In(1/1ag time) = a, + a,/T + a,T? + aja, (43)

The lag and generation times from the
Gompertz equation for Salmonella on the surface
of bovine tissues were modeled as exponential-
decay functions of temperature.®

lag time (generation time) = a, + a, exp (a, T)
(44)

The development of the Bélehradek or square
root model was reviewed recently.!#-17 This

model was based on the linear relationship be-

tween the square root of the growth rate and
temperature. An important feature was the con-
cept of a biological zero, the value for tempera-
ture when the growth rate was extrapolated to
zero. This model was first used by Ratkowsky et
al.!®5 to model the temperature effect on growth
rate of 14 cultures from 5 species and 29 data sets
from the literature. The simplest version of the
model for temperatures below the optimum growth
rate was

Vk=a(T-T,) (45)

where k was the growth rate or other rate term,
such as the reciprocal of the lag time. T, was the
temperature when the line was extrapolated to k =
0. and a was the slope. The T, was termed the
notional temperature and did not necessarily mean
the lowest temperature where growth was ob-
served or would occur.'®* This model was ex-
tended to the full temperature range by adding
two parameters, a, and T,,.'*

Vk = a(T = Ty ){ 1 - explay(T = T, 01} (46)

where a, was the slope for the increasing rate. T,,,,,
was the extrapolated temperature at k = 0 for the
increasing rate, a, was the slope for the decreas-
ing rate, and T, was the extrapolated tempera-
ture at k = O for the decreasing rate. This model
was fitted to data from 30 strains of microorgan-

isms (12 species) and the authors reported that it
was easy to fit and produced unbiased and nor-
mally distributed errors. Zwietering et al.?'> con-
cluded that the proper form of the square root
model should be

k = (a(T = Tpy) {1 - explay(T - T, )1})? (47)

to have homogeneous variances. These authors
modified the equation further by squaring the
below-optimal temperature parameters

k = [a,(T = Tpn)P {1 - explay(T - T, )]} (48)

~ Alber and Schaffner®’ maintained that the
natural logarithm of growth data

Ink = In [@a(T - T,,))* (1-exp(a (T - T,.)))]
49)

corrected for heterogeneity of variance more ef-
fectively than the square root transformation of
Equation 48,

Vk = a,(T = Ty {1 — explay(T — T, )1}2 (50)

Alber and Schaffner® also showed that the square
root model was more accurate than the Schoolfield
model when both were transformed by taking the
natural logarithm.

Gill and Phillips® tested Equation 46 using
growth of E. coli in nine media. In six of the
media, the fits of the data at the lower or upper
temperature ranges to the model were not good;
however, the authors asserted that the model was
suitable for describing the temperature depen-
dence of the growth rate in a particular media.
Lobry et al.!** compared Equation 46 with the
cardinal temperature model

k = Ko (1={(T = Top)¥[(t = t,)?

+ T(Tmax + Tmin -T) .Tmax X Tniin] }) (ShH
where k,, was the optimum rate, T,, was the
temperature of the optimum rate, and T was in K.
Equation 51 had a smaller residual sum of squares
than Equation 46.

Heitzer et al.® compared three models for
describing the effect of temperature on growth.



The first was called the master reaction model
and was based on Arrhenius and Schoolfield
ideas, wherein the single limiting reaction was
affected by both high- and low-temperature in-
activation. The second model was a damage/
repair model based on the Arrhenius relation-
ship with the addition that activity was affected
by the rate of damage and the rate of repair. The
last model was the square root model with T,
and T, (Equation 46). Growth of Klebsiella
pneumoniae, E. coli, and Bacillus sp. at 13
temperatures was compared by residual errors
of least-square fits. They concluded the dam-
age/repair model was over parameterized,
whereas the master reaction model was good,
although a two-step fit was often necessary.
The square root model (Equation 46) was con-
sidered good “even though devoid of any con-
ceptual basis.”

A series of straight lines from growth rates of
S. xylosus at various temperatures in media with
different a, from added sodium chloride all ex-
trapolated to a common T,;,."*” When the square
root model was extended to include a,, the equa-
tion was

vk = 0.0205 (a, — 0.838)12 (T — 275.9) (52)

The values 0.838 and 275.9 represented the ex-
trapolated minimum a,, and T, (K), respectively.
A feature of this model was an absence of cross
product terms, thus implying that the factors acted
independently of each other. This equation also
modeled growth by S. xylosus without an interac-
tion between temperature and a,."’

The incorporation of pH into the square root
model was made by Adams et al.* by multiplying
(pH - pH,,;,) by the temperature terms.

vk = a(T - T,,,)(pH - pH,)'"?  (53)

This model gave good fits for two pathogenic and
one environmental serotype of Y. enterocolitica.
The inhibitory pH depended on the acidulant with
pH,,, of 4.8, 4.7, 4.4, and 4.0 for acetic acid,
lactic acid, citric acid, and sulfuric acid, respec-
tively.

McMeeKin et al.'*® suggested the next expan-
sion of the model could include a,, pH, and tem-
perature.

\/k = f [(a“ - awmin)(pH - pI—Imin)}”2 (T - Tmin)
(54)

This model was acceptably fitted to growth rates
of L. monocytogenes in tryptone soya broth deter-
mined with the Gompertz model.?” Comparison
to published growth rates in foods showed a good
but safe estimate by this model.

The secondary model for growth rates deter-
mined by the time-to-turbidity primary model
(Equation 27) was*®

k= a(pH - pHmin)(pHmax = pH)(T = Tmin)2 (55)

with an adjustment to T,,,, = T, + a,(pH — pH,)*
because the pH fit was poor at highest pH values.
T, was the lowest value of T,;, and pH, was the
pH at which T, has its lowest value. To adjust
for variance increases with square of time, non-
linear regression using variance weighted regres-
sion with 1/t was used to calculate the param-
eters.

The fermentation of meats by Pediococci was
modeled using the square root of the time to attain
a selected pH (5.3 or 5.0).1¢2 The different T,
values were considered to reflect the relative abili-
ties of the different cultures to perform at the
lower temperatures. The effect of an antioxidant
(TBHQ) and the inoculation level of Pediococci
acidilactici was also modeled. Modeling the lat-
ter allowed prediction of the inoculation levels
needed to reach a desired pH within a specified
fermentation period.

The square root model (Equation 45) was
used to model the effect of temperature on the rate
of bacterial growth in raw mutton'8”-88 and on the
Gompertz growth parameters in minced beef.'*
The inverse of the generation time (generations
per hour) and the inverse of the lag time (h™)
were used for the Gompertz rate terms. Data for
the growth of L. monocyiogenes, B. cereus, and
Y. enterocolitica on rice and noodle products
showed promising fits to the square root model.?

Stannard et al.'®! defined the rate parameter
as the time to achieve a specified increase in
bacterial numbers, thereby taking the lag phase
and growth rate into consideration simultaneously.
Similarly, the growth rates of Halobacterium were
calculated by the reciprocal of the time to reach
an optical density (turbidity) of 0.3 and modeled



by the square root Equation 45 with temperature
at different sodium chloride concentrations (as
a,).* The lag time of spoilage microorganisms in
milk*3 was modeled by the square root of the
reciprocal of the lag time. The temperature effect
on the shelf life of pasteurized milk was fitted to
the square root model by setting the growth rate
to the reciprocal of the time for the count to reach
log CFU/ml 7.5.%

A comparison of the linear equation,'®
Arrhenius equation,'* and the square root mode]'63
for predicting the shelf life of poultry and meat
products by Pooni and Mead"® found that the
square root model was the most appropriate for
predicting the effect of temperature. They noted
discrepancies between the square root model and
actual growth, particularly at the higher abuse
temperatures. This was attributed to different flora
predominating at the higher temperatures. The
Arrhenius and Bélehradek (square root) models
were also compared by Phillips and Griffiths,'>’
McMeekin et al.,!’® and Ratkowsky et al..'® all
authors favored the square root model.

Grau and Vanderlinde®® compared several
versions of Arrhenius and square root models for
their ability to fit growth of L. monocytogenes on
lean and fatty beef tissue. All models were poor
predictors of lag times and growth rates on fatty
tissue. For growth on lean tissue. the linear
Arrhenius Equation 46 acc. unted for over 99% of
the variance.

In (gen/h) = a, + a/T + a./T* + a,/pH + a /pH*
(56)

where a, were parameters and T was the tempera-
ture (K). A modified square root model

V Gen/h = a, + a,;K + a,(1/(pH - pH,)
+ a;(T/(pH - pH,)) (57)

where a, were parameters and pH, was found to
be 4.8 accounted for over 98% of the variance.
However. Little et al.’*! found major devia-
tions between the square root model and experi-
mental values at the suboptimal temperature range
of Y. enterocolitica. The quadratic response sur-
face was able to describe the growth rate (time for
10° increase) in both laboratory media and UHT

milk with a lower mean square error than the
square root model. The influence of four acids on
the time for growth also had a lower mean square
error for the response surface model than the
square root model at nearly all combinations of
pH and temperature.

Adair et al.? found that the Arrhenius
(Schoolfield) model predicted the growth of six
species better than the square root model. Others
disputed this conclusion, claiming the square root
model fitted the data well, was close to linear, and
had good estimates of the parameters, had inter-
pretable parameters, was appropriate to the sto-
chastic properties of growth rates, and was easy to
USC.GI‘”g

Other substrate-based models were used by
Rochet and Flandrois,'’¢ Petrova and Stepanova,'%¢
and Korte et al.!'> These models, based on the
exhaustion of a limiting nutrient, were based on
the Monod equation.!® They have received little
use in food microbiology because the limiting
substrates and their quantities were usually un-
known. An interesting variation associated the
growth rate of E. coli to subinhibitory levels of
antibiotics.>*

Models of binary populations on biofilms were
based on cell mass and biochemical products spe-
cific to one of the species.'8? Tokatli and Ozilgen'*®
used the model of Luedeking-Piret to model exo-
toxin production. Toxin production rate was pro-
portional to the rate of growth plus the production
related to absolute population numbers.

dToxin/dt = a,(dM/dt) + a,M (58)

where Toxin was the toxin concentration, M was
the cell population, and a, and a, were param-
eters. They merged growth and stationary phases
by incorporating into Equation 58

dM/dt = uM(1 - MM, (59)

where 1 was the growth rate and M, ,, was the
stationary phase population. Papageorgakopoulou
and Maier'>? modeled substrate utilization and
cell growth (increase in biomass) in terms of two
potentially rate-limiting enzyme systems for sub-
strate inhibition and enzyme repression. Other
substrate models were described by Tan and Gill'¥*



and Straight and Ramkrishna.!®* A model for the
growth rate of lactic acid fermentations was based
on undissociated lactic acid being the primary
inhibitory agent during the fermentation and
Monod-type relationships to substrates.?'! The
model calculated the concentration of undissoci-
ated acid and determined the specific rates and
parameters for growth and lactic acid production
at various pHs. By postulating noncompetitive
inhibition by lactic acid, the model generated close
fitting curves for both growth and acid produc-
tion. Another model, based on a biochemical pro-
cess,!3? had E. coli cell growth controlled by the
protein-synthesizing system through negative feed-
back on the ribosomal RNA. The rates responded
to the precursor metabolite concentrations in the
medium rather than the flux of ATP.

ll. AUTOMATED DATA COLLECTION

Collecting sufficient data to fit primary mod-
els required numerous samples and enumerations
over the entire time period of growth or inactiva-
tion.?” Secondary models with several factors usu-
ally needed parameter values from several hun-
dred primary curves. Conventional plating
techniques were executed faster and with fewer
dilutions and plates using spiral plating and auto-
matic plate counting (Spiral Systems. Inc.. Balu-
more, MD). Replacing sampling. diluting. and
plating with automated techniques potentially
provides more data points for primary fits and
allows inclusion of more factors and combina-
tions in the secondary model with less manual
effort and cost.!”® Fully automated technigues for
measuring microbial growth have been based on
turbidity (Bioscreen, Labsystems Oy. Helsinki.
Finland) or conductance (Malthus Microbiology
Systems, Westlake, OH).

A. Turbidity Methods

Turbidity, less properly termed optical den-
sity or absorbance, has a long history of use in
microbiology. Many studies and models measured
the growth rate in absorbance units per hour for
bacteria and mold.>?> The development of equip-

ment to automatically read 96-well ELISA plates
allowed recording of a sufficient number of read-
ings to plot a smooth growth curve regardless of
how rapidly or at what time of day or night growth
occurred. The number of wells permitted numer-
ous combinations of environmental parameters
(except atmosphere and temperature, which must
be varied by separate runs) and sufficient replica-
tion. The technique had two limitations: (1) high
counts (ca. 10° CFU/ml) were necessary before
turbidity was detected, and (2) the relationship
between turbidity and microbial count was nei-
ther linear nor log-linear.

Damoglou and Buick3® transformed turbidity
to CFU/ml with a predetermined polynomial re-
gression equation and then fitted the Gompertz
function. The estimates of the Gompertz param-
eters came from the portion of the curve after the
7 time (midpoint or inflection point) and before
the stationary phase. McClure et al.** developed
a procedure to fit a logistic function and a calibra-
tion equation for cell population to optical den-
sity. A quadratic response surface was then fitted
to the curve parameters for the factors of tempera-
ture, sodium chloride, and hydrogen ion concen-
tration. With high-quality original data, this ap-
proach gave reasonable values for the growth
rate. When the original data had to be extrapo-
lated to extend to the lag period, the accuracy
decreased. The other problem with this method
was that marginal growth conditions may not al-
low sufficient growth to cause turbidity, leading
to an erroneous conclusion of no growth. These
limjtations made this a suspect technique for the
initial modeling of an organism; however, once
the general nature of the organism’s growth char-
acteristics were known, it could be used to in-
crease the accuracy of selected levels or to de-
velop specific food applications. The time to
turbidity model (Equation 27)%* also was suitable
for automated reading.

Growth of microorganisms in gradient agars
was measured by turbidity.!3-136155 Two-dimen-
sional gels were made with increasing pH in one
direction and increasing temperature in the other.
A third factor. the sodium chloride level, was
incorporated by running a series of gels. By map-
ping turbidity changes with time over the gel,
multidimensional models were developed.



B. Conductivity Methods

Conductivity techniques are based on the
metabolism of a microbial population causing
changes in a growth medium, which, in turn,
results in conductivity changes.'4° This technique
has been used in two ways. For the first, there was
an inverse relationship between the cell popula-
tion in a sample at a given time and the time for
their metabolism to produce detectable amounts
of conductants in a specified analytical medium.
Samples must have been taken throughout the
growth curve, inoculated ‘into the analytical me-
dium, and the time for the conductivity change
noted. This means of determining cell popula-
tions had little advantage over traditional plate
counting procedures. The second approach was to
follow the magnitude of the conductivity changes
in the medium treatment being modeled with in-
cubation time.?6-'4° These conductivity changes
from the production or utilization of charged com-
pounds were related to metabolic activity of the
microorganisms, although not necessarily directly
to growth. The magnitude of the response de-
pended upon the specific microorganism, compo-
sition of the medium, and environmental factors.
Because the inoculum must grow to ca. 108 CFU/
ml before detectable conductivity changes resulted,
many of the considerations and limitations of the
turbidity technique also applied.

The modeler converted the measured electri=
cal units to cell populations and extrapolated the
growth rate and lag time from the late exponential
phase of growth. This assumed that conductivity
changes in all of the media were the same for a
given microbial growth, which may not be accu-
rate. Because of these limitations, this conductiv-
ity technique would not be recommended for the
initial model development. It would be an excel-
lent technique for modeling food products as part
of the quality assurance or HACCP program. Plate
counts initially would be correlated with conduc-
tivity measurements for a specific food. then sub-
sequent analyses and modeling could use conduc-
tivity methods.

A deterministic model for bacterial growth'%
was partially based on conductance measurement
data. The influence of temperature, pH, and lac-
tate levels on the growth rates of Y. enterocolitica

0:3 was modeled in broth using the Gompertz
function and polynomial regression.? Growth rates
in pork samples with adjusted pH and added lac-
tate were close to those predicted by the broth
model.

IV. HEAT INACTIVATION MODELS

Thermal process times for inactivation of
clostridial spores in low acid foods used the first-
order inactivation model, that is, a constant pro-
portion of spores were inactivated in each succes-
sive time period. The D value was the time for
one log decrease in viable spores at a given tem-
perature, menstruum, etc. The z value was the rate
of change in the log of the D value with tempera-
ture. An excellent anthology of the pioneering
papers in the development of this model was ed-
ited by Goldblith et al.¥

This classic model is still used frequently for
thermal inactivation. Mackey et al.'*® found the D
values for L. monocytogenes in fresh and cured
beef and chicken. Hutton et al.!% determined the
decrease in D values of PA3679 and C. botulinum
213B with decreasing pH and increasing sodium
chloride concentrations. The rate of thermal inac-
tivation in egg yolk with sodium chloride or
saccharose'®? and the destruction of E. coli by
microwave heating’’ followed a first-order inacti-
vation ‘with time and an Arrhenius relationship
between the rate and reciprocal of temperature
(K). Regression equations for temperature and
each of three medium parameters (a,, osmotic
pressure, and water-binding energy) on the D value
of S. aureus showed increased survival with in-
creasing sodium chloride or potassium chloride.'*”

However, deviations from the linear declines
in the log numbers with time were frequently
observed,>!® even in the earlier literature 4144
Deviations were of two general forms, a shoulder
or lag period before any death occurred and a
tailing from an apparently resistant subpopula-
tion. The shoulder was attributed to a requirement
for more than one damaging event or the need to
activate the spores to make them more suscep-
tible to thermal destruction. Two concepts were
proffered for tailing.** The first was a vitalistic
mechanism wherein resistance was possessed in



. varying degrees by the different cells that consti-
tute a suspension of apparently identical cells.
The relative heat resistance was permanent for an
individual cell, and a collection of cells presum-
ably formed a normal distribution of cells. The
second concept, termed mechanistic, assumed that
resistance was the result of cellular processes. At
different times of its life cycle or in specific en-
vironments, an individual cell has different de-
grees of thermal resistance. At the time of heat-
ing, a small population of cells was in a resistant
state. Tailing may also be a treatment artifact, a
result of a heterogeneous population, nonuniform
treatment, clumping, or enumeration errors.*

Rodriguez et al.,'”’'® Teixeira and Rodri-
guez,'* and Smerage and Teixeira'® advanced a
population dynamics theory for thermal inactiva-
tion of spores. The cause for various patterns of
initial decrease or increase in spore populations
was a combination of rapid inactivation of the
less heat-resistant population, a period of activa-
tion of remaining spores to a more heat-sensitive
state, and final inactivation. Activations and inac-
tivations were first-order processes. UHT steril-
ization was modeled by dormant spores being
either inactivated or activated by heat.'®° The ac-
tivated spores.were then subject to inactivation.
The temperature dependence of each of the three
parameters followed the Arrhenius equation, and
the model successfully predicted spore inactiva-
tion during variable heating regimes.

Abrahm et al.! also hypothesized that the ini-
tial shoulder before the linear decline resulted
from the necessity for dormant spores to be acti-
vated before being destroyed by heat. Both acti-
vation and inactivation were first-order processes
and the first step was the limiting process.

The inactivation of L. monocytogenes in a
submerged coil heating apparatus was determined
at 45 combinations of temperature (56, 60, and
62°C), hydrogen ion concentration (0.1 to
57.5 uM; pH 7.0 to 4.24), and added sodium chlo-
ride (0, 3, or 9%).5° The survivor data did not fit
the traditional log-linear relationship. A logistic
function of log number of survivors vs. log time
described the results.

N, = a, + [(a, — a))/(1 + exp((4k(T - t)/(a, — a,)))]
(60)

where N, was the log number of survivors, a; was
the upper asymptote (= N,), a, was the lower
asymptote, T was the time of the maximum slope,
k was the maximum slope, and t was the log,,
time. For these 45 combinations, the values for a,,
a,, and k were not significantly different. A poly-
nomial regression equation for T was determined
with terms for temperature, salt, and hydrogen
ion concentration.

The thermal death time (TDT) method for
determining process times (D and z values) was
compared with an Arrhenius approach, with the
former calculating that 16% less time was neces-
sary for processing than the latter.!3! The TDT
method had a reaction rate parameter that was a
function of temperature, whereas the Arrhenius
method had a reaction rate parameter that was a
function of the inverse of the temperature. The
two turned out to be proportional to each other
over a narrow temperature range. The authors
concluded that the TDT method was not as good
a model as the Arrhenius method; however, most
workers continue to prefer the TDT method.

V. INACTIVATION/SURVIVAL MODELS

It would be desirable in chilled foods and
shelf or semi-shelf stable foods to have any patho-
gens present in the foods decline in numbers dur-
ing storage. For many foods, inactivation of mi-
croorganisms results from a combination of
inhibitory factors, none sufficient by themselves
to cause death.!%> Declines in numbers of environ-
mental microorganisms were observed to follow
first-order Kinetics.”%-!12 Whether the process was
termed inactivation or survival was frequently
arbitrary. Inactivation implied a faster rate of kill-
ing by an active agent, whereas survival implied
a slower and more passive rate of decline. How-
ever, modeling was the same for both.

A. Linear Model

Survival curves frequently showed lag or
shoulder periods where the cell numbers remained
constant. This period was followed by a decline
approximating a first-order process. In some sur-



vival curves, a tailing was observed from a resis-
tant or long-lived subpopulation. A simple re-
gression equation was determined to relate the lag
time to the pH of the broth.!** Buchanan et al.*-*
modeled the shoulder and first decline by two
discontinuous equations. At times less than the
lag time, the population equaled the inoculum.

N, =N, t<t (61)

where t, was the lag time. After that time, the
decline was

N, =N, +at-t) t>¢g (62)
where a was the slope and equal to—1/D. This pair
of equations was run under the ABACUS curve
fitting program (ERRC, ARS, USDA, Philadel-

phia, PA)* using a Gauss-Newton iteration rou-
tine.

B. Logistic Model

A logistic model was proposed by Kamau et
al.'"" for enhanced thermal destruction of
L. monocytogenes and S. aureus by the lactoper-
oxidase system. For data exhibiting one slope

log M/M,) = 2/[1 + e™] (63)

A second model described survival data exhibit-
ing twe slopes

log (M/M,) = log({2F,/[1 + exp(k,t)]}
+ {2(1-F)/[1 + exp(k-D)]}) (64)

where F, was the fraction of population in the
major group. k, was the inactivation rate param-
eter for the major population. and k. was the
inactivation rate parameter for the subpopulation.
A final expression modeled survival data having
a shoulder followed by a decline

log (MI/MO) = log[l + CXP(-ktm)]
- log[1 + exp{k(t—t,,)} ] (65)

where t,,, was the time for M = (M_/2). a measure
of the lag time.

The classic D value for the first log decline
was

D =29/k (66)

Whiting?* expanded this model to include a shoul-
der and two slopes

log(M/M,) = log[F,(1 + exp(-k,t,))/(1 + exp(k,(t - t,)))]
+log[(1 = F))(1 + exp(—k,t))/(1 + exp(kq(t - t))))]
(67)

where t, was the lag period, F, the fraction of
cells in the major population, and k, and k, the
respective rate parameters (D = 2.3/k). When
the subpopulation did not exist, the fraction of
cells in the subpopulation was set to an insig-
nificantly low value. If the shoulder was not
present, t, was set to 0.0 and the model became
a nearly straight line. Whiting?* compared the
linear (Equations 61 and 62) to the logistic
(Equation 67) model and found the linear model
calculated slightly larger D values or slower
rates of inactivation. This was explained by the
curving nature of the logistic model over esti-
mating the slope when :itted by least-squares
procedures.

This model (Equation 67) was used to simu-
late survival in uncooked meat products.? BHI
broths with added lactic acid, sodium chloride,
and sodium nitrite were inoculated (108 CFU/
ml) with L. monocytogenes or S. aureus and
stored at different temperatures. The broths were
sampled until the counts declined to undetect-
able levels. The logistic model (Equation 67)
was fitted to several hundred survival curves
and the resulting parameter values were used to
calculate the time for 10%-fold inactivation,
which were then described by second-order
regression equations.

An interaction between pH and the concen-
tration of lactic or acetic acid on the inactiva-
tion times of L. monocytogenes was observed.?®
For both acids. the logarithm of the time for
10*-fold inactivation was inversely related to
the square root of the undissociated acid con-
centration. The equation for lactic acid was

time 10°*-fold inactivation (h)
=exp(7.348 - 0.1773[HA]'?) (68)



The undissociated acid concentration was calcu-
lated from the pH and total acid concentration by
the Henderson-Hasselbach equation.

Miller'#! used the shoulder and two-slope
model for decreases in the population of L.
monocytogenes in broths with various concentra-
tions of sodium chloride, glycerol, or propylene
glycol. With sodium chloride, declines occurred
at a,, at and below 0.91. As the a,, decreased, the
shoulder shortened and the D values became
smaller. With propylene glycol, declines occurred
at a, = 0.93 and resistant subpopulations were
observed for a,, of 0.87 and lower.

VI. MODELING CHANGING CONDITIONS

Most modeling was conducted under pre-
sumed constant conditions to determine the re-
spective parameter values. However, conditions
of temperature, pH, or atmosphere composition
seldom remained constant during the storage of
actual chilled foods.''” Gill* estimated the growth
of E. coli during the cooling of liver and organ
meats by calculating the growth in a specific pe-
riod of time using the rate of growth for the
average temperature during that period. Total
growth was obtained by summation of the time
periods. This approach was applied to E. coli
growth during cooling of beef carcasses.*” The
growth and inactivation rates (first-order) of
C. perfringens were determined at various tem-
peratures used in meat cooking and found to fol-
low an Arrhenius relationship.'”” The model ac-
curately predicted growth during constant and
increasing temperature conditions. This approach
was similar to the traditional thermal process cal-
culations that summed the lethality at the tem-
perature of each heating period until the desired
amount of killing was achieved.

Gill and Jones* compared predictions of
E. coli growth during the cooling of beef oftals
with bacterial counts. Some predictions were good:
however, highly variable cooling rates in some of
the offal-containing cartons led to large errors in
the predictions.

Blankenship et al.** developed a model for
the growth from spores of C. perfringens in chili
during a 5- to 15-h cooling process after cooking.
It combined a logistic function for the lag time

1/t, = a,[1 — exp(-a,(t — a)))] (69)

(where t; was the lag phase time and a,. a,. and a,
were adjustable parameters) with an exponential
function for growth

N, = N e (70)

The values for k came from a square root model
(Equation 46) with parameters for T, Tpao @y
and a,. The number of germinating spores and
growth were calculated each hour using the respec-
tive chili temperature. The growth of Salmonella
during the cooling of bovine tissues was predicted
by interpolation of the lag time and generation
times that were calculated from isothermal deter-
minations of Gompertz parameters and an expo-
nential-decay function for temperature.%

Powers et al.'*®® found that Aerobacter
aerogenes and S. aureus grew faster under square
wave or sinusoidally cycling temperatures from
40 to 80°C that when incubated at a constant
60°c. They proposed a method to integrate reac-
tion rate with temperature. Fu et al.”> combined a
sinusoidally fluctuating temperature with
Arrhenius or square root models. Abrupt tem-
perature transitions in the growth of Pseudomo-
nas fragi were effectively modeled. although an
effect of the temperature change was still present.

A dynamic model combining the Gompertz
function. the square root equation, and an inacti-
vation term when the microorganism was placed
into a lethal environment described the microbial
population as a function of time and tempera-
ture.2® The model dealt with both varying tem-
peratures and temperatures above the maximum
growth rate temperature.

Exponentially growing E. coli cultures sub-
jected to abrupt changes in temperature had an
initial growth rate that was intermediate to the
rates normal for the initial or final temperatures.'*’
Shaw'®2 demonstrated that an adjustment time
occurred depending on the extent of the changes
that yeasts make when changing environments.
The greater the change. the longer the adjustment

- period. They concluded that growth at low tem-

peratures altered or damaged the cell in a way that
reduced the growth rate. Preincubating L.
monocytogenes at temperatures of 28°C or higher



increased the lag times when subsequently incu-
bated aerobically at 5°C or preincubated at 13°C
when subsequently incubated anaerobically. The
exponential growth rates at 5°C were not affected
by the preincubation temperatures.

For most current growth and survival models,
the inocula were usually overnight cultures in
optimal media at favorable temperatures. It is
probable that the lag phase of microorganisms
after transfer to a 15°C abuse environment would
not be the same as that of microorganisms natu-
rally present in a food stored at 5°C and then
abused at 15°C. Baranyi et al.'’ included the ef-
fect of the state of the inoculum culture on the
observed lag period in his growth model, but did
not explore the magnitude of the effect with quan-
titative data. In nonmodeling papers, culture age
and preincubation temperature and pH were shown
to affect microbial survival,337071.116.185 jncluding
that in cheese.!!® Starved Vibrio and E. coli had
increased resistance to lethal temperatures.!!?
Kolter'!? discussed some of the physiology of
stationary, nongrowing, or extremely slow-grow-
ing bacteria, including survival genes, protein
synthesis, and mutations. Additional research is
needed to model both one-time changes.in tem-
perature and various cycling regimes more accu-
rately. Similar comments could be made regard-
ing changes in other environmental factors, such
as pH or atmosphere.

Vil. TERTIARY LEVEL

Growth models for six food pathogens based
on the primary Gompertz function and second-
ary-response surface equations were combined
into a DOS-based PC program (Pathogen Model-
ing Program).*' The program has a series of menu
screens asking for input on the desired microor-
ganism, aerobic or anaerobic atmosphere, initial
bacterial population. pH. sodium chloride level,
temperature, and nitrite concentration. The pro-
gram then asks whether growth parameter values,
an estimated time for a specified growth, or a
graph showing growth is desired and calculates
the requested prediction.

The Micromodel program in the U.K. has
predictive equations for growth, survival, and
death of pathogens.?34%65-1% Growth models for

L. monocytogenes, Y. enterocolitica, B. cereus,
Campylobacter jejuni, psychrotrophic C. botuli-
num, A. hydrophila, Salmonella, and S. aureus
include the factors of temperature, pH, and a,,.
Validation of these equations using several foods
from each of six major groups (meat, fish, veg-
etables, dairy products, bakery products, and eggs)
is underway. This modeling program will use the
results of predictive microbiology research in the
context of an expert system.

Expert systems are computer programs that
emulate the reasoning and decision making of
human experts. They consist of a set of rules and
descriptive information. To use an expert sys-
tem, the user starts with a query, the system then
applies the rules to ask further questions, and
through dialog with the user retrieves or calcu-
lates the desired information. Adair and Briggs?
described the development of a microbiological
system for chilled ready-to-eat foods that con-
sists of four sections: a database of information
on the manufacture of these foods, a database of
information on microorganisms, a meal-design
knowledge base, and a predictive modeling
spreadsheet system. Other software provided an
interactive interface with the user, an expert sys-
tem shell that contained the rules and informa-
tion and conducted the logical processes, and a
graphics presentation program that displayed the
predicted growth. Expert systems can be a rapid
means to retrieve appropriate information and
also ensure consistent decision making. The au-
thors also pointed out the process of developing
an expert system of formalized knowledge and
identified inadequacies in the current informa-
tion.

Zwietering et al.?'® depicted a system wherein
the pH, a,, temperature, and oxygen availability
affected the growth kinetics of the microorgan-
isms expected to predominate in different foods.
A series of rules determined the probable micro-
organisms. The growth rate at a specific condition
was calculated as a proportion of the optimal
growth rate. The proportional rates for tempera-
ture and pH were determined by the square root
model (Equation 47) and a,, by a linear relation-
ship.!*” The overall rate was the product of the
proportional rates for each factor.

Voyer and McKellar?® described an expert
system under development by Agriculture



Canada that used input from (1) a flowchart of
the production system, (2) the factors affecting
survival and growth of microbial pathogens, and
(3) the ranges for each factor. The factors were
grouped into-five types: contamination, formu-
lation, time/temperature, package permeability,
and assembly. The ranges of variation for each
factor’s parameters and the probabilities for dif-
ferent levels of each factor occurring were deter-
mined. The system then calculated the accumu-
lated growth/decline for each sequential step in
the process.

VIil. VALIDATION OF MODELS

General models for growth or inactivation
are typically derived in broth media with con-
trolled factors such at pH, salt. and temperature.
After collecting an appropriate number of curves
and calculating the primary and secondary mod-
els, it is important to test the accuracy of the
model with new data and new combinations of
factors.65!7 This provides an estimate of the
goodness of fit and shows where additional data
are needed. An overparameterized or excessively
complex model usually fits a specific data set
better than a simpler one. However. it may not
be better than a parsimonious model when tested
against new data. The second stage of validation
is to compare the predictions to actual microbial
behavior in foods. This demonstrates the limita-
tion of the model and, when a particular food is
not accurately described, suggests what addi-
tional factors (or a consideration of microenvi-
ronments) need to be included in the model to
increase its applicability. Models cannot be used
with confidence to make predictions in foods
until this validation is done. Errors in the esti-
mate of growth should tend toward a taster rate
than the rates observed in foods to make ua con-
servative or “fail-safe” prediction.

IX. LIMITATIONS OF MODELS
A. Statistical Limitations

An important statistic missing from most cur-
rent secondary models and tertiary level programs

is an estimate of the variation around the calcu-
lated value. With marginal conditions for growth,
the variation between replicates becomes large. '
Transformations were used to homogenize the
variances for fitting the models. The logarithm of
values for time parameters were frequently closer
to being normally distributed than untransformed
values.

Fits of both primary and secondary models
gave an F value and estimates of the error, either
R2, mean square error, or residual sum of squares.
However, the quality of a model remained a
subjective evaluation. Reparameterizing the model
made variances more uniform and normally
distributed or made the parameters more inter-
pretable; however, the process was controver-
sial.‘3-"‘-7"'77""6-203'-2'5 Ratkowsky et 31.166 demon-
strated the consequences of mathematical
transformations of the square root model and the
effect on the mean square errors. The relationship
between the variance of Vk, now homogeneous
over the temperature range, and the variance in
the lag time was given by

Var(t) = 4t3Var(Vk) (71)

where t, was the lag time and k the growth rate.

Several reparameterizations of the square root
model having T,;, and T,,, were tested by Alber
and Schaffner®’ with Yersinia growth rate data.
The model was transformed to the natural loga-
rithmic form because the range of variances of the
growth rate increases as the magnitude of the
growth rate increases. The version with the mini-
mum sum of squared error was

k = {In[(a(T = Tpn))?* (1 — exp(ay(T = T, N1}
(72)

This model (Equation 72) fitted data near the
maximum growth rate more closely than the other
versions of the model after Ratkowsky et al.'®*

In(k) = 2 In[a (T = T;){1 — exp(ay(T - T ,)}H]
(73)

or after Zwietering et al.?!

In(k) = In([a,(T = TP {1 = explay(T = T, )1
(74)



Alber and Shaffner® weighted the regression cal-
culations and found this compensated for uneven

variances as well as the transformations did.

Weighted regression analysis factors each param-
eter value by the reciprocal of its variance to
calculate a regression equation with the smallest
weighted sum of squares.'? The use of this tech-
nique for determining secondary models needs
further consideration by modelers.

Cole et al.55! claimed that bacterial Kinetic
responses were more linear with hydrogen ion
concentration than pH values (pH being a trans-
formation). The log,, CFU/ml is also a transfor-
mation of the actual bacterial population.

B. Biological Limitations

It is important that the model developer
clearly specify directly or through the model
what the limits of the model are, that is, what
microorganisms, what factors, the ranges of each
factor, and what combinations of factors give
valid answers. The presence of additional in-
hibitory factors in a food that were not present
in the model invalidate the model or require
cautious interpretation of the predictions. Cur-
rently, growth models do not usually include
factors such as anion effects from the acidulant
used, phosphates, sorbates and bacteriocins, and
humectants other than sodium chloride. No broth
models include competition from other micro-
organisms. Some models developed with foods
include the “normal™ spoilage flora, but how
this flora may change in species and number
with plant or season and the effect on the mod-
eled microorganism are largely unknown.

Because pathogens grow in most foods. the
important question then is whether the patho-
gens will grow to a significant population be-
fore the spoilage flora cause the food to be
rejected by the consumer.!?! There is a need for
systematic modeling of representative classes
of spoilage microorganisms so that tertiary soft-

-ware can then plot comparative growth ¢ -ves
for both pathogenic and spoilage orgar ms.
For some pathogens with very low infective or
toxic doses, such as Listeria. Yersinia, .nd
C. botulinum, the criteria may be growth-no
growth and the spoilage flora has little signifi-

cance unless they alter the environment by low-
ering the pH or produce a bacteriocin.

X. APPLICATIONS OF MICROBIAL
MODELS

It must be stressed that models are valuable
tools for making predictions and planning
HACCP programs.®*-205 Particularly at present,
as models are evolving from the basic research
laboratory to use by industry and regulatory
agencies, models should be considered as ini-
tial estimators of microbial behavior and guides
for evaluating potential problems. Models do
not completely replace microbial testing nor
the judgment of a trained and experienced mi-
crobiologist. Models can provide very useful
information for making decisions in the follow-
ing situations.

A. Estimate Risk

Time-to-growth and survival models can es-
timate whether there is likely to be a risk in a
particular food after a specified time-temperature
storage. Growth models can aid in setting a pull
date governed by growth of a pathogenic or spoil-
age microorganism.

B. Identify Critical Control Points

Identification of critical steps in the process
by the model assists in developing an HACCP
program. A critical control point can exist where
the model indicates that a certain level of a factor
permits or suppresses microbial growth. Quanti-
tative estimates of microbial behavior at different
levels of the factors can suggest the allowable
ranges for that factor.

C. Evaluate Reformulations

The consequences of reformulations on growth
o: :nactivation can be estimated. Models show
wiich factor has the major influence and can
identify alternative formulations with similar or
enhanced resistance to growth.



D. Evaluate Out-of-Process Product

The consequences of out-of-process events,
such as lack of intended salt or inadequate refrig-
eration, can be immediately determined. Deci-
sions to rework, rapidly utilize, or scrap a product
can be made without waiting for testing.

E. Education

By generating graphs or estimates of the time
to a specified microbial population, models can
be educational tools, particularly for nontechnical
people. The model can dramatically demonstrate
the importance of maintaining proper refrigera-
tion temperatures or the benefits of high-quality
raw materials with lower initial populations.

Using models of microbial response poten-
tially saves resources. time. and money by re-
ducing much of the laboratory work. This per-
mits the laboratory to utilize its resources in
other areas. The model will quickly give the
ranges of concern for a factor and thereby guide
the design of challenge tests. storage trials, and
other conventional techniques to assess the prob-
ability of pathogen growth. Examining the
model’s predictions increases the understanding
of what governs microbial growth or decline in
a particular food and thereby gives the processor
greater confidence in his process and product.
This knowledge enables the manufacturer to cre-
ate a more sophisticated and effective HACCP
program.

XI. RESEARCH NEEDS

Many avenues for additional research have
been alluded to in this review: a brief listing
includes: modeling of spoilage microflora. deter-
mination of error or confidence intervals in model
predictions, incorporation of additional environ-
mental factors into models. identification of ef-
fects of food structure. eftect of the physiological
state and culture history of the inoculated cells,
integrating growth and inactivation models, and
need for automatic techniques. The sizes of data-
bases needed for multifactor models, the com-
plexities of expert systems. and the requirement

to validate a model make cooperation between
researchers imperative.

Most of the current primary and many sec-
ondary models are descriptive, therefore, models
based upon physical-chemical, physiological, or
biochemical considerations would be an advance.
This in turn may lead to a renaissance in basic
metabolic research. Understanding the mecha-
nisms of heat resistance, acid and salt tolerance,
lactate and phosphate inhibition, injury and re-
pair, spore germination, and subpopulation ori-
gins, for example, would have benefits for food
and other areas of microbiology.

Ultimately, what is desired is a risk assess-
ment: what are the chances of becoming ill from
a food-borne pathogen after consuming a specific
food? This requires quantitative evaluation of three
areas.” The first is to identify and enumerate all
possible sources of contamination. Both the fre-
quency of occurrence and the numbers of patho-
gens are needed. The second is to understand the
physiology. biochemistry, and behavior of the
pathogens; how fast will they grow or produce
toxins under specified conditions? Finally, the
characterization of the human response to the
pathogen, that is, what is the infectious dose?
These areas must be integrated into a publicly
trusted, cost-benefit analysis to determine the steps
that minimize risk. Current efforts in microbial
modeling are making rapid strides in fulfilling the
second area.

Xil. CONCLUSION

The progress in microbial modeling has been
impressive. and models are becoming a standard
research tool and a valuable aid in evaluating and
designing food processes. However, it is not yet
possible to rely solely on models to determine the
safety of foods and process systems. Laboratory
testing is still necessary to unequivocally deter-
mine the propensity for pathogen growth or sur-
vival in the food product.

DISCLAIMER

Reference to a firm or brand name does not
constitute endorsement by the U.S. Department



of Agriculture over others of a similar nature not
mentioned.

This review includes work published or known

to the author through February 1993.
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