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What Have We Learned?

Experience in developing predictive models for foodborne pathogens has
resulted in improved design, efficiency of data collection, and precision

Richard C. Whiting

MICROBIAL MODELING PROGRAMS, PRINCIPALLY AT THE U.S. DEPT.
of Agriculture and the United Kingdom’s Ministry of Agriculture,
Fisheries, and Food (MAFF), have created databases and calculat-
ed growth models for 10 pathogens, survival models for 4 patho-
gens, thermal-death-time models for 5 pathogens, and time-to-
growth models for proteolytic and nonproteolytic types of Clostrid-
ium botulinum. We have learned that microbial behavior in a food
is largely determined by 3-5 environmental factors, usually tem-
perature, pH, NaCl level (water activity), and atmosphere.

Suitably accurate and precise predictions can be made with these
models to rapidly and conveniently provide an initial estimate of
microbial behavior for use in estimating microbial growth/surviv-
alin a food, guiding R&D efforts, developing Hazard Analysis Crit-
ical Control Point (HACCP) programs, assisting in planning labo-
ratory experimentation, and educating nonmicrobiologists.

We have also learned the importance of the model developer’s
clearly stating the limitations of a particular model and the user’s
respecting those limits. Providing confidence limits about a predic-
tion is necessary to convey the appropriate precision and reliance
to the user. Factors controlling the lag phases need more research,
and new growth models, such as the Baranyi model, that incorpo-
rate lag effects and fluctuating or variable conditions (e.g., temper-
ature) are being developed.

In microbiology, distributions are critical. The mean value is fre-
quently not as important as information about the fastest-growing
strains, first spores to germinate, or the tailing of the resistant
subpopulation of survivors during thermal inactivation. Modeling
research has illuminated the need for knowledge of the microbial
physiology that affects the observed behavior. Current modeling
does not answer the question “Is this food/process is safe?” or “Will
eating this food make me sick?” Modeling needs to be incorporated
into a risk-assessment system that includes distribution of patho-
gens in raw materials, changes in pathogen populations during
food manufacture, distribution, and preparation, and infectious
dose models. ‘

We have learned that modeling foodborne pathogens is laborious
work. Multiple-factored models may need hundreds of treatment
combinations and six months of lab work to become a single equa-
tion that runs on a personal computer in a fraction of a second.

Most important, we have learned that modeling works. The
growth or survival of microorganisms in most foods was shown to
be largely controlled by 3-5 environmental factors, and the micro-
organism’s response in a food was similar to that in broth culture
at corresponding levels of these factors (Ross and McMeekin, 1994).
Although predictability is a fundamental assumption for all scienc-
es, we have learned that microbial behavior is indeed predictable
within error ranges which, in turn, are also quantifiable.

Using various mathematical relationships and statistical proce-
dures, quantitative models have been developed that are useful to
microbiologists in regulatory agencies, HACCP programs, and lab-

oratories. Usefulness reflects the compromises between a model’s
being complex enough to provide accurate predictions and being
simple enough to have input parameters readily available to the
user. A specific model may not be useful to everyone, it may not
contain an important factor for the specific food of interest, the
range of a factor may not include the value of interest, or the accu-
racy and precision may not be adequate.

Several reviews describe the development of this field and ex-
plain the various models that have been developed (McMeekin et
al., 1993; Ross and McMeekin, 1994; Skinner et al., 1994; Whiting,
1995). Two modeling software programs currently exist, the Food
MicroModel developed by MAFF and available from Leatherhead
Food Research Association, Leatherhead, Surry, UK., and the
Pathogen Modeling Program developed by USDA’s Eastern Region-
al Research Center, Wyndmoor, Pa.

Conducting and Validating
Modeling Research

Through experience, we have learned various ways to improve
the design, efficiency of data collection, and precision of the result-
ing models. The present generation of models used a cocktail of
bacterial strains, hoping to encompass within the model the char-
acteristics of the strains most likely to be encountered in commer-
cial products. This was a valid approach, but a better approach
might be to first determine the growth rates of a number of out-
break strains at slow, medium, and fast growth conditions, then
develop the model using one of the faster and more frequently oc-
curring strains. The growth of other strains would then be related
to the modeled strain. A risk-assessment model would factor the
frequency of occurrence of each strain with its growth characteris-
tics.

Models are usually developed in broths where compositions are
easier to control than solids. Broths are more homogeneous and
conveniently sampled. Repeated sampling of a single sample will
generally result in more precise data points and better curve fits
than will replicate packages that are sampled at different times.
The number of data points necessary to fit a growth or inactivation
model depends on the complexity of the model; however, 7-10
“quality” data points appropriately distributed are probably suffi-
cient.

The design of our sampling plans is closer to a fractional factorial
than a central composite design because the data are more variable
toward the extremes of a factor’s range than in the center. An ad-
equate number of data points need to be collected at conditions
where the microorganism’s behavior is changing. After the data
from the initial combinations of treatments are collected, additional
combinations are frequently added at treatment levels of particu-
lar concern representing specific food products or at levels where
the parameters are in transition. Replication of some treatment
combinations is necessary to estimate the residual error, but addi-
tional combinations of the factor levels are better than extensive
replications of single combinations. The range of the environmen-
tal factors must include values expected to be of interest to the
model user. Extrapolating a prediction outside the range of the



data used to develop the model is very dangerous. Most of the poly-
nomial-regression, secondary models show better compliance to the
statistical requirement for normal variances when the logarithm or
square root transformation of the primary parameter data is used.

Once a predictive model is calculated, the predictions must be
carefully compared to the originating data set to determine if there
are particular factor combinations which do not fit well or appear
unreasonable. Additional data may need to be obtained and the
model recalculated.

We have learned that it is critical that models be validated before
confidence is placed in them. Validation means that the prediction
is compared to inoculated-pack data. Comparisons of model predic-
tions to inoculated-pack studies have shown that their predictive
ability is good and usually somewhat conservative or “fail-safe”
(McClure et al., 1994). However, it remains critical that the user be
made aware of and respect the limitations of a specific model. Some
foods will contain additional factors not included in the model that
have a significant influence on the pathogen’s behavior. Use of the
model in this situation would be inappropriate, and the prediction
would probably be inaccurate. A user should test a limited number
of products or storage temperatures to ensure that the model is suf-
ficiently accurate.

Uses of Models

Experience has shown that models can quickly provide informa-
tion for making decisions in many situations:

* Prediction of Risk. Models can estimate the extent of growth
or likelihood of survival of a pathogen after a period of normal or
abuse storage, thereby highlighting problem products and process-
es. Growth models can assist in establishing “pull dates” by esti-
mating the growth of likely pathogens. This information can be
used in conjunction with information on the spoilage flora.

¢ Quality Control. Quantitative estimates at different levels of
the environmental factors indicate the acceptable ranges and can
aid in the development of HACCP programs. The setting of a crit-
ical control point (CCP) is currently based on subjective interpre-
tations and experience. Modeling and risk assessment will increas-
ingly be used to determine the CCP values. Models are also useful
when an out-of-compliance event, such as an unexpected tempera-
ture rise, must be evaluated for microbial consequences. Decisions
on whether to rework, utilize rapidly, or discard a food or ingredi-
ent can be made without waiting for microbial testing.

« Product Development. The microbial consequences from
changes in the composition or processing can quickly be evaluated.
New formulations can be compared to the new and old model pre-
dictions and to actual experiences with the old formulations. -

» Education. Models can help explain microbiological behavior
to nontechnical people. The generation of graphs or estimates of
times to reach critical populations can dramatically illustrate the
importance of CCPs or the importance of obtaining raw materials
with low microbial counts. The models are useful in teaching food
microbiology because of their ability to quickly illustrate the effects
of environmental conditions on microbial behavior.

¢ Data Analysis and Laboratory Planning. Modeling tech-
niques should become a routine tool for the description and anal-
ysis of microbial data even when the study is not intended to devel-
op a model. Curve-fitting routines provide an unbiased quantified
determination of growth rates. Standard deviations can be estimat-
ed and the parameter values compared and statistically tested.
Laboratory efficiency is increased when models guide experimen-
tal design by suggesting treatment levels and appropriate sampling
times.

Risk Assessment

The ultimate goal of modeling foodborne pathogens is to estimate
the likelihood that consuming a particular food will make someone

sick (CAST, 1994). To model this risk, information is needed in four
areas:

_ 1. Occurrence and Level of the Pathogen in the Starting
Material. Quantitative information on the initial numbers of
pathogens in raw ingredients or at the beginning of the desired
process to be modeled would typically be depicted as a histogram,
representing the percentage of samples containing various concen-
trations of a microorganism. An example is the national survey for
the presence of Listeria monocytogenes on the surface of beef car-
casses, where 65% of the carcasses had less than 0.03 cfuw/em?, 24%
0.03-0.3, 5% 0.301-3.0, 6% 3.001-30.0 (FSIS, 1994).

9. Rates of Growth, Thermal Death, and Survival. The next
step is to estimate the changes in pathogen numbers during food
processing, distribution, and final preparation. This involves link-
ing a series of growth, survival, and cooking steps of various dura-
tions. Most previous efforts in modeling have estimated changes in
microbial populations under constant conditions.

3. Amount of Food Consumed. The serving size, frequency of
consumption, and other consumer practices affect the total number
of viable pathogens that an individual is actually challenged with.

4. Infectious Dose. The infectious dose depends on the viru-
lence of the specific strain when consumed, the food matrix, and the
susceptibility of the individual. The overall process involves infec-
tion, morbidity, and mortality. These models are discussed by Haas
et al. (1997).

Information is needed on the consequence of ingesting a specif-
ic number of pathogens. Currently, it is believed that there is no
threshold dose, that one viable pathogen has a definable probabil-
ity of causing illness. Models developed for waterborne pathogens
show a sigmoidal relationship between number of Shigella and the
probability of infection. However, probabilities of only 1% P=0.01)
are unacceptably high. Current estimates of 25 million cases of ill-
ness in the United States from foodborne microorganisms per year
would calculate to be a probability of 102 per year or about 10 per
meal (CAST, 1994).

Prototype Risk-Assessment Model

A simple model was written to estimate the probability of an
infection from Salmonella in a cooked poultry patty and demon-
strates the kinds of information needed in a risk-assessment model.
The model’s steps are the initial populations, storage, cooking, con-
sumption, and infectious dose (Fig. 1). The initial distribution is
adapted from data (inset) presented by Surkiewicz et al. (1969),
where 3.5% of the samples have high populations (> 0.44 cfw/g). The
growth model uses the exponential growth rate calculated by the
Salmonella model of Gibson et al. (1988). Only the temperature
and storage time are input; in this example, 21°C and 5 hr. The
thermal death model was determined from published D values for
Salmonella in eggs (Annellis et al., 1954). Input is for temperature
(60°C) and time (6 min). The amount of food consumed (100 g) rep-
resents a typical serving. The infectious dose model for Salmonel-
la is an exponential function with a parameter value of 0.00752
(Rose, 1994). For this model, one Salmonella has the probability of
0.007 of being an infectious dose.

Most steps have an uncertainty about the calculated mean val-
ue. Some uncertainties may have a definable distribution such as
a normal distribution with its standard deviation. Others will not,
such as the histogram describing the initial populations. Because
of the complexities of the complete model and the discrete distribu-
tions, simulation modeling techniques are used to determine the
occurrence pattern of various probabilities of infection. In this
method, the entire model is recalculated (iterated) many times. As
the calculation advances through the steps and it encounters a
variation or distribution, a value is randomly selected according to
that distribution. This means that most iterations will cluster near
the mean, but a few iterations will start with higher numbers and



progress through faster growth and
slower death rates to give a higher prob-
ability of infection. Conversely, some it-
erations will result in a lower probabil-
ity. After 1,000 iterations, a frequency
pattern results for the probabilities of
infection for the process being modeled.

For this demonstration model, the
standard deviation was estimated to be
0.2 log units for the growth period and
0.1D for the cooking. The calculated
median value for each step is given in
Fig. 1, and the mean probability that
this process is an infectious dose is
10-46. This appears to be a relatively
low-risk process, however, when this
process is iterated and the distribution
of infectious doses is observed, a tailing -
toward higher risk is apparent. About
3% of the iterations exceeded a risk of
103, clearly an unacceptable situation.

Examination of the individual itera-
tions showed this tailing to originate
from the relatively small number of ini-
tial samples with high Salmonella con- -
tamination. Rerunning the simulations
without these samples reduced the me-
dian risk only to 10-47. However, the
high-probability tailing is gone, and
none of the iterations now exceed 10-3. If
this situation were still judged to be unacceptable, or the samples
with high initial numbers could not be avoided, the cooking temper-
ature could be raised, e.g., to 61°C, and the model calculates that
the increased thermal death decreases the median probability to
10-74, This probably would be considered a “safe” process, although
there is no public consensus on what constitutes an acceptable risk
from foodborne pathogens.

This risk model can be expanded by incorporating distributions
for storage times, cooking temperatures, or amounts of meat con-
sumed. Additional processing steps and storage periods could be
added in a modular manner. This type of model can quickly show
which factors have a major influence on the final probability of in-
fection and where process control must be maintained. In this ex-
ample, a change of only a degree or two in the cooking temperature
of a process designed to achieve a 4-log reduction can greatly influ-
ence the probability of infection.

Limitations of Current Modeling

The variation about both the individual steps as well as the final
risk assessment is of paramount importance in evaluating the risk.
We are mostly interested in evaluating the marginal situations, i.e.,
processes that are not overtly dangerous but exhibit potential to
cause illness after one in 1,000 or one in 100,000 consumptions.
Knowing the average value for a growth rate or any of the other
steps is not sufficient to make this evaluation. The dangerous sit-
uations will arise principally from the outliers. The few samples
with high contamination, the first pathogenic cells to adjust to a
new environment and begin to grow, or the subpopulation with the
greatest thermal resistance is most likely where the outbreaks will
arise.

Even for our current one-step models, an estimation of the vari-
ance would greatly assist in evaluating the prediction. We frequent-
ly want the models to estimate behavior at conditions of slow
growth or extended survival times. This is where the variation is
greatest and the model user needs to be aware of its magnitude. An
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Fig. i—Risk-assessment model for Salmonella in a cooked poultry patty

example is the model for Staphylococcus aureus survival that rang-
es from less than one day to 5 months, depending on the environ-
mental conditions (Whiting et al., 1996). In broth at 25°C and pH
5.0, for example, the time for one log decline is 62 days, with low-
er and upper confidence intervals at 29 and 133 days, respective-
ly. At pH 4.0, the times are 11, 7, and 19 days, respectively.

Many studies of the occurrences of pathogens in raw materials or
final products in the marketplace report only the presence or ab-
sence of the pathogen, as the percentage of positive samples.
However, for risk analysis when pathogens are present, we need to
know how many of them are present in the various samples. This
can be illustrated as an unstructured frequency histogram, or it -
may closely resemble a normal curve with a mean of 4.0 log cfu/cm?
and a standard deviation of 1.9 log cfu/em? that was found for
Pseudomonas on retail pork carcasses (Coates et al., 1995).

Spoilage organisms have not received much attention for devel-
opment of comprehensive models, although much information ex-
ists in the literature and in the food industry’s experience for spoil-
age of specific products. Often, the safety of semipreserved foods
becomes a race between spoilage and pathogenic microbes. When-
ever possible, we want the spoilage flora to produce off-odors and
appearances before the pathogens can grow or produce enough tox-
in to cause illness. It would be desirable to model both spoilage and
pathogenic microorganisms through the processing and storage
periods to the consumer’s table. This approach would not be appro-
priate for pathogens, such as Escherichia coli 0157:H7 or Campy-
lobacter jejuni, which are infectious in low numbers; the concern is
about their presence and survival, rather than growth.

Growth, death, and survival models are the most developed as-
pect of the various components of the risk-assessment process.
However, major shortcomings exist in two areas. The first is the
previously discussed determination of variation. We are in the pro-
cess of recalculating our existing models and adding confidence
limits to the predictions. This will give users a much better idea of
how to evaluate the models’ estimates. However, this only esti-



mates the variation in the data set used to create the specific mod-
el. Additional variation exists between strains that we have not
incorporated into existing models. Model developers usually use a
cocktail of 3-5 “typical” strains. In effect, the models made from a
cocktail represent the fastest-growing or most-resistant strain in
the cocktail. This has the advantage of making the models conser-
vative or “fail-safe.” But further information is needed about the
natural diversity in growth rates, D values, or survival times of
strains of all the pathogens.

Information such as that for 39 strains of Listeria monocytoge-
nes will increase the confidence in the predictions (Barbosa et al.,
1994). The average lag phase duration at 4°C was 150.9 hr with a
standard deviation of 29.5 hr, and the generation time was 43.1 +
10.7 hr. A more-sophisticated risk model could link the parameter
values of a strain with the frequency of occurrence of that strain.
Otherwise, it is difficult to evaluate the importance of a strain such
as Salmonella senftenberg 775W, which has a D value approxi-
mately five times longer than other Salmonella strains, but has not
caused a foodborne outbreak. Basing a model on S. senftenberg
T75W, which would be the effect if it were part of a cocktail, would
be excessively conservative.

The other source of variation not incorporated into current mod-
els is the physiological state and prior history of the cell. Most of the
current models use inocula grown for 18-24 hr at favorable temper-
atures (37°C) in nutritious broths. Hudson (1993) has shown that
the lag phase duration of Aeromonas hydrophila depends on the
temperature the cells came from as well as the new temperature.
Growth rates after the lag phase ended were not affected by the
previous temperatures. A pathogen adapted to a refrigerated tem-
perature in a meat processing plant at 10°C would have a much
shorter lag time and earlier beginning of the exponential growth
phase after accidently contaminating a piece of refrigerated meat
than would be predicted by the current model—a “fail-dangerous”
situation. The model by Baranyi and Roberts (1994) considers the
apparent lag phase a consequence of two processes, the first reflect-
ing the prior state of the cell (q,) and the other the rate of the ad-
justment from one environment to the next (v).

Heat shock and other stress proteins, lag vs exponential growth
phases, and starved, injured, or biofilm cells are all biochemical
and physiological phenomena that affect the length of the lag phase
and need to be incorporated into models. A current objective of
modeling is to combine growth, death, and survival models through
a series of process steps or fluctuating storage temperatures to sim-
ulate a food product from manufacture to consumer. It is critical to
know the actual extent of the lag phase, if present at all, when in-
dividual steps and different models are sequentially linked. In
many commercial situations where the food is in bulk and pack-
aged, the microorganisms undoubtedly adapt their growth rates as
the temperature changes, and no lag period reoccurs.

Other microbial situations that need modeling are growth in
heterogeneous foods, on surfaces or boundaries, in microenviron-
ments, and in biofilms. Most models use percentage of NaCl as a
factor, and generalization to water activity and other salts and
nonionic humectants is needed. The suppression of growth by so-
dium lactate and other buffered organic acids show that the concen-
trations of acid anion (or undissociated acid) can be a significant
factor for growth or survival.

Current models do not factor competition from other microorgan-
isms. In most situations, this probably doesn’t become a significant
factor until relatively high populations are achieved, above the
numbers of importance for pathogens. However, high numbers of
spoilage flora could suppress growth of low numbers of pathogens
during the period just before organoleptic unacceptability is
reached. Staphylococcus aureus is a pathogen traditionally consid-

ered to be inhibited by competition. Two other situations where
other microorganisms affect the pathogens would be the lowering
of pH from formation of lactic acid and production of bacterocins in
fermented foods.

Powerful, But Not a Substitute

Essentially, modeling is a technique to quantitatively analyze
microbial behavior. It provides a more accurate prediction in com-
plex situations than previous subjective methods. However, the
usefulness and accuracy of models are critically dependent on the
quality of the data that go into each step. The expectations for a
model must be within the limitations of the data that went into its
creation. Great progress has been made in modeling growth and
inactivation, but much still remains to be done. There is a lack of
appropriate quantitative data for most of the steps in the risk-
assessment process at present.

Models can be a powerful tool for microbiologists, quickly provid-
ing an initial estimate of a microorganism’s behavior. However,
they are only one of several sources of information. They do not
replace the experience and judgment of a trained microbiologist.
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