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Predictive model for growth of
Clostridium perfringens during
cooling of cooked cured chicken’

Vijay K. Juneja’* and Harry M. Marks?

Estimates of the growth kinetics of Clostridium perfringens from spores at temperatures applicable
to the cooling of cooked cured chicken products are presented. A mode! for predicting relative growth
of C. perfringens from spores during cooling of cured chicken is derived using a nonlinear mixed
effects analysis of the dala. This statistical procedure has not been used in the predictive microbiology
literature that has been wiitten for microbiologists. However, recently software systems have been in-
cluding this statistical procedure. The primary growth curves, based on the stages of cell development,
identify two parameters: (1) germination, oulgrowth, and lag (GOL} time, or fag phase time; and (2)
exponential growth rate, egr. The mixed effects model does not consider GOL and egr as constants,
but as random vatiables that would, in all likefihood, differ for different cooling events with the same
temperature. As such, it is estimated that the egr, for & given temperature, has a CV of approximately
15%. The model obtained by the mixed effects model is compared to the one obtained by the more
traditional two-stage approach. The estimated parameters from the derived models are virtually the
same. The model predicts, for example, a geometric mean relative growth of about 3-4 with an upper
85% confidence limit of 21-3 when cooling the product from 51°C to 12°C in 8 h, assuming log linear
decline in temperature with time. C. perfringens growth from spores was not observed at a temperature
of 12°C for up ta 3 weeks.

Introduction

The genus Clostridium perfringens is one of the
most common bacterial agents in foodborne-
disease outbreaks throughout the world (Strin-
ger et al. 1680). The Center for Disease Control
{CDC) estimates that the organism has been
implicated in an estimated yearly average
{from 1982 to 1992) of about 1/4 million cases
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*Mention of brand or firm name does not eonsti-
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culture over others of a similar nature not
mentioned.

of foodborne illnesses with an average of 41
hogpitalizations and seven deaths per vear in
the United States (Mead et al. 1999). The patho-
gen ranks third behind Salmonella and Campy-
lobacter in terms of total nunbers of foodborne
illness cases. In 1994, the total cost of illness
due to C. perfringens waa estimated at $123 mil-
lion in the US (Anonvmous 1995).

Clostridium perfringens are widely distribu-
ted in a variety of foods, especially meat and
poultry, although other foods are oceasionally
implicated (Duncan 1970, Genigeorgis 1975).
The vehicle of transmission is usually a cooked
food in which heat-resistant spores of this
pathogen will survive cooking temperatures,
The heat-activated surviving spores germinate,
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outgrow, and multiply during post-cook hand-
ling, primarily under conditions conducive to
germination such as when the cooling of
caoked foods is not rapid or when the products
are not properly refrigerated or are tempera-
ture abused. Improper cooling {40-9%) of food
products have been cited as the most common
cause of C. perfringens outbreaks (Angulo et al,
1998). The foods involved in these outbreaks are
generally thought to contain large number of
viable vegetative cells, some of which survive
passage through the stomach and eventually
aporulate in the intestine, where the enterotox-
in responsible for the characteristic food-poi-
soning symptoms {(diarrhea and abdominal
eramps) is synthesized and released during
sporulation (Duncan and Strong 1969, Duncan
et al. 1972).

Sufficient evidence exists to document that
C. perfringens can grow in media supplemented
with various levels of curing salts. While
growth was not inhibited by 4% w/v NaCl,
some strains do not grow in 5-6% NaCl and
most strains failed to grow in 8% NaCl (Ro-
berts and Derrick 1978). Gough and Alford
{(1965) reported that C. perfringens growth was
not inhibited at 8000 ppm of sodium nitrite but
was inhibited when the concentration was in-
creased to 12000 ppm. It is worth mentioning
that the inhibitory effect of sodium nitrite is
enhanced when it is heated (Davidson and Ju-
neja 1990). Gibson and Roberts (1986) reported
that the inhibitory conecentrations of sodium
nitrite can be lowered if combined with other
curing salts. In their study, C. perfringens
growth at 20°C 1 inhibited by 200 pg of nifrite
ml~! and 3% salt or 50 pg of nitrite m1~* and
4% salt at pH 6-2 in a laboratory medium. In
another study, the levels of sodium nitrite
necessary to inhibit the strains tested dropped
from 300 {0 25 ppm when the concentration of
Na(Cl was increased from 3 to 6% (Roberts
and Derrick 1978},

Mathematical models to predict the relative
growth of C. perfringens from spores, through
lag, exponential and stationary phases of
growth, at temperatures normally associated
with the cooling schedules have heen devel-
oped (Juneja et al, 1999), The growth medium
used o measure growth in the study by Juneja
ot al. (1999) was trypticase-peptone—glucose—

veast extract broth. Recently, a predictive
model pertaining to the behavior of surviving
C. perfringens spores during cooling of cooked
beef supplemented with preservatives was
developed (Juneja et al. 2001). However, a model
regarding the growth from spores during cool-
ing of cooked chicken supplemented with
preservatives has not been published in the
scientific literature. Accordingly, in the work
reported here, the objective was to develop a
model that can be used to help determine the
safety of cured chicken products or those sup-
plemented with low levels of preservatives,
which have been cooled and subjected to tem-
perature abuse conditions.

Because of the potential food safety hazard
asgociated with cooling cooked foods, dis
cussed above, the United States Department
of Agriculture (USDA) requires that cooked
meat products be cooled according to specific
guidelines in order to control risks from C. per-
fringens and Clostridium botulinum. Perfor-
mance standards for the cooling of meat
products, which were published in the Federal
Register 66(39) on February 27, 2001, specify
that there should not be more than logis 1 mul-
tiplieation of C. perfringens within the product
during cooling (USDA 2001). Thus, the primary
application of the model developed in this pa-
per would be to predict small to moderate
amounts of relative growth of C. perfringens
from spores during cooling of cooked cured
chicken products. There exists evidence that,
for certain situations, lag times can be a func-
tion of cell densities, through intercellular
communication enhanced by substances pro-
duced by the cells (Kaprelyants and Kell 1996).
However, for large densities (>10 cells g 1)
there appears to be nearly a constant cell lag
time {Kaprelyants and Kell 1988). In the appli-
cation of models for predicting relative growth
of C. perfringens cell populations with respect
{0 the aforementioned USDA requirement, the
injtial dengities are assumed to be at least in
the range of 10 to 10! cells g™, corresponding
to the approximate range of initial levels used
n this study. Consequently, the model used in
this paper assume that relative growth is not
dependent on the initial levels, and is based on
one that has been developed recently (Baranyi
1998) for predicting small relative growth of a
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poputation of cells initially in lag phase. The
predictions of these models apply only to a po-
pulation of cells initially in lag and remain in
the exponentiai phase of growth.

A common approach for determining a model
for predicting growth, referred to here as the
standard approach (van Gwern and Zwietering
1998), is to fit, for each experimental condition,
E, a growth curve (called the primary model),
(2|8, as a function of time, ¢, characterized by
a set of estimated parameters, 0. Then, the eati-
mates of these parameters are considered to be
functions of a set of environmental variables,
0(E), reflecting some conditions of the environ-
ment of growth, in this paper, temperature, T,
A secondary model of 8{T) is derived through
regression analysis so that, for an arbitrary
temperature, estimates of the parameters that
characterize the growth curve can be made and
in turn an estimate of the amount of growth
can be made for that temperature. For models
that we have seen presented in the predictive
microbiciogy literafure, it has been assumed
that the parameters that characterize the
growth curves, for given environmental condi-
tions, are constant. However, it is possible to
visualize them as random variables with ex
pected values and standard deviations that
are funetions of the environmental conditions.
The vartance of a predicted value for a given
cooling event would be the sum of the variance
of the expected value, var(E{o(0))), an
additional variance, E(var(w{t}0))), that is due
to the vaniation of the growth characteristics,
9. Using the standard approach, data analysis
including analyses of variances would be
needed to determine or estimate the values of
these standard deviations. An alternative ap-
proach is to treat the set of environmental vari-
ables as Independent variables in a single
system of equations with the observed or mea-
sured levels as the dependent variable (Mem-
bré et al. 1998). However, to account for the
standard deviations of the parameter values
and for the correlations that exist among the
values of the dependent variable, a nonlinear
mixed-effects regression is needed (Lindstrom
and Bates 1990) Estimating the parameters
using this alternative approach involves com-
plex calculations, which we imagine 1s the
reason why this alternative approach has not

Predictive model for growth of Clostridium perfringens

been used {to our knowledge) in the predictive
microbiology literature for microbiologists.
However, software systems S-plus® and, more
recently, SAS® in release 80 have procedures
that permit estimates of parameters for such
models. The output of these regression proce-
dures include estimates of the parameters,
with confidence intervals, variances that are
associated with design or other environmental
factors as well as the covartance matrix of all
the estimates. Thus, use of a reliable statistical
package offers a simple approach for estimat-
ing parameters of complex models, deriving
confidence intervals of parameters and predic-
tions of growth. In this paper, a comparison of
both approaches is made,

Materials and Methods

fest aorganisms and spore production

Three strains of O perfringens, NCTC 8238
{(Hobbs serotype 2), NCTC 8239 (Hobbs sero-
type 3), and NCTC 10240 (Hobbs serotype 13),
obtained from our culture collection, were
used in this study. The spores were produced
in a modified formulation of Duncan and
Strong sporulation medium as previously de-
scribed (Juneja et al. 1993). After the spore crap
of each strain had been washed twice and re-
suspended in sterile distilled water, the spore
suspensions were stored at 4°C, Spores of indi-
vidual strains at equal numbers were then
pooled to prepare a cocktail. This composite of
spore strains was not heat-shocked prior to
use.

Growth medium/products

Ground chicken was obtained from Hatfield
Quality Meats, Inc. (Hatfield, Pennsylvanms,
USA). The proximate analysis of meats per-
formed by the supplier indicated that the chick-
en contained 12% fat, 71% moisture, 2% ash
and 15% protein. Brine (3-5%) was thoroughly
mixed in the chicken before the meat was
placed into stomacher 400 polyethyvlene bags
(100gbag !} and vacuum sealed. Thereafter,
five of these bags were vacuum sealed in
barrier pouches (Bell Fibre products Corp.,
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Columbus, Geargia, USA), frozen at —40°C and
irradiated {(42%Gy) te eliminate indigenous
microflora. Random samples were tested to ver-
ify elimination of microflora by diluting in
0-1% {wtjvol) peptone water (PW), spiral plat-
ing (Spiral Biotech, Bethesda, Maryland,
USA: Model D) on Tryptic soy agar {TSA; Dif.
co) and then incubating, both aerobically and
anacrobically, at 37°C for 48h.

Sample preparation, and inoculation

Sodium nitrite (120 ppm) and the cocktail of
three strains of C. perfringens were added
(1ml) to 100 g of the thawed irradiated beef pro-
ducts. Thereafter, the inoculated meat was
blended with a Seward laboratory Stomacher
400 for 5min to ensure even distribution of so-
dium nitrite and the organisms in the meat
sample. Duplicate 5g ground meat samples
were then weighed aseptically into 30 x 19cm
sterile filtered Stomacher bags (Spiral Biotech,
Bethesda, Maryland, USA). Negative controls
included bags containing meat samples inocu-
lated with 0-1m! of 0-1% (w/v) peptone water
with no bacterial spores. Thereafter, the bags
were compressed into a thin layer (approxi-
mately 0-5-1mm thick) by pressing against a
flat surface, excluding most of the air, and then
heat-sealed under vacuum (negative pressure
of 1000 millibars). One bag, randomly selected,
was opened and heat shocked at 75°C for
20min. The samples were serial diluted in
0:1% peptone water (wtjvol), surface plated
with a Spiral plater (Model D, Spiral Biotech,
Bethesda, Maryland, USA) on Shahidi-Fergu-
son perfringens agar as described earlier
(Juneja et al, 1996). The lower limit of detection
by this procedure is 21 ¢fu m1~*. The totat C. per-
fringens population was determined after 48h
of anaerobic incubation. This was recorded as
the initial inoculated numbers of bacterial
spores before cooking.

Incubation temperatures, sampling times
and bacterial enumeration

Simulating the conditions that occur in the re-
tail food industry and institutional food ser-
vice settings, the wacuum-packaged bags
containing the meat samples were immersed

in a programmable water bath (Techne, ESRB,
Cambridge, UK) at 10°C. The temperature of
the water-bath was programmed to increase in
a linear fashion to achieve 60°C in a period of
1h. This process simulated the cooking of rare
roast beef and heat-shocked the spores. Sam-
ples after cooking were enumerated and the
data were recorded as spore numbers after
cooking. Thereafter, all samples were Incu-
bated in constant temperature water bath sta-
hilized at 10-0°C, 12:0°C, 15-6°C, 19-0°C, 21-1°C,
23-9°C, 26-7°C, 29-4°C, 32-2°C, 35-0°C, 37-8°C,
40-6°C, 43-3°C, 46-1°C, or 48-9°C. At frequent in-
tervals, appropriate for each growth tempera-
ture, samples were taken out for C. perfringens
count as described above. Two independent ex-
periments were done at each temperature. For
each replicate experiment, an average cfug™
of two platings of each sampling point
were used to determine estimates of the
growth kinetics.

Statistical Methodology

Primary relative growth mode/

The procedures used for determining predic-
tive models for relative growth during the lag
and exponential phases of growth have been
presented in an earlier paper (Juneja et al.
2001). A description of the model is given here.
Baranyi (1998) developed a model by keeping
track of the status of original cells, O, and
“new” cells, D, where a D cell is either a result
of completing an acclimation or lag phase of an
O cell and is ‘ready’ to divide, or is an offspring
¢cell from a D cell. Define () to be the infinite-
simal cell ‘death’ rate of the O cell, and p(t) tobe
the infinitesimal cell ‘birth’ rate of a D cell. Let
ma(¢) represent the number of cells at time £
The following set of differential equation

mo(t) - ;\‘(t)mo (t)1
g (£} =M)m, (£) + u(tymy, {8)

with boundary conditions, mg(0)=N; and
mp(0)=0, are derived reflecting the assump-
tions that the population of O cells follows a
first-order kinetic decay and the D cells in-
crease due to two sources: (1) the death of O
cells, and (2) the birth of D cells. Equation (1)

Egn(1)
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corresponds to equations used by Baranyi
(1998) with the exception here that the transi-
tion rates, A(f) and u(t), are time dependent. De-
fining v(t) = [§ u(r)dr and y(£) = [ A(r)dr, the
solution to Egn (1) is

m,(t) = Noe~0®)
t

m,(t) = Noe " / A(r)e O dr,
0

The relative growth, r(t)=(m(t)+mp(t))/No,
therefore, can be expressed as

r(t) = e10 4

Eqn (2)

t
X / AMr)e 0+ dr Eqn (3)
0

When it is assumed that the transition rates
are constant: p(¢) = p, and A(t) = A, for a given
growth curve, it is derived that

pe M 4 heHt

) =E Eqn (4
which is the same equation derived by Baranyi
(1998) (Eqn (23)). There are three parameters:
Ny, A, and p. A mathematical definition of lag
time for a nonlinear microbiological growth
curve (logo(cfu unit™) vs time) has been de-
fined as the intersection of the horizontal line,
y=log10(Np), and the tangent line of the curve
with slope equal to the maximum derivative
(McMeekin et al. 1993, Baranyi 1998). Applying
this definition to Eqn (4), the mathematical lag
time is defined as the intersection of the hori-
zontal line, y=logio(Np), and the asymptotic
line of the curve as t approaches infinity. The
mathematical lag time, lagTime, is thus

In( +w/2) Eqn (5)

lagTime =
corresponding to Eqn (28) of Baranyi (1998).

A complete growth curve includes cells that
are in stationary phase, depicted when the rate
of growth decreases and approaches zero. Gen-
erally, it is not too hard to select observations
that represent cells that are in lag or exponen-
tial phase by looking at the linear portion of
the growth curve, and excluding observed high
levels that are not included in this portion;

Predictive model for growth of Clostridium perfringens

most reasonable selections would provide esti-
mates of the set of parameters p and A that
would be close to each other, relative to the
differences that arise between independent
experiments and between measured and pre-
dicted values from secondary models. To help
us in the selection, estimates of a complete
growth curve were made using a model devel-
oped by Baranyi et al. (1993), which can be de-
scribed by the following differential equation:

i(t) = o(t)nx(t)(1 — x(t)/M),  Eqn(6)

where x(t) is the number of cells at time ¢, is a
constant representing the maximum exponen-
tial growth rate, a(f) is a factor which repre-
sents a lag phase, 0>a(f) >1, and M is the
assumed maximum level at the stationary
phase. The solution to Eqn (6) is of the form
f(A(2)) where A(t) is the anti-derivative of a(?),
that is, dA(¢)/dt = u(t) and f satisfies the differ-
ential equation of Eqn (6) without a(t) (or as-
suming a(t) =1 for all #), so that f is the logistic
function. Baranyi et al. (1993) identified a fa-
mily of functions {a,(f)}, motivated by Michae-
lis-Menten kinetics; here, we select a simple
function when n=1, A(f) =¢— In(1+t/x), where
k is a constant. Thus Eqn (6) is a function of
four parameters: x(0), the initial level at
time =0;n; x; and M.

Secondary models

The above equations apply for a constant tem-
perature, 7. To derive equations that apply for
arbitrary temperatures, the values for the
derived parameters are considered to be
functions of temperature, and statistical re-
gression procedures are used to derive second-
ary models that express the parameter values
as a function of temperature (van Gerwen and
Zwietering 1998). Following customary proce-
dures, the actual secondary model is performed
with the exponential growth rate expressed in
the common log (base 10) scale, egr = p/In(10).
For generalizing egr, the Ratkowsky function
(McMeekin et al. 1993) of the form

egr/X(T) = (T = Tinin) [1—e? T T2 Eqn (7)

is used, where @, b, Tyin, and Tpax are the para-
meter values determined from a regression
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analysis. For T> Tpin, or T'< Thnax, €81 18 de-
fined to be zero.

For generalizing lag times, the ratios of the
lag times to the generation times for D cells
(the time needed for doubling the population
= In{2)/1) have been considered (Ross 1999).
From Eqgn {5) this ratio, for a given tempera:
ture, is

(1 +p/d)
Rat == Wm Eqn (8}
The time an O cell takes to become acclimated
and transform to a D cell depends upon many
factors related to the environment and history
of the cells (Baranyi and Roberts 1994). How-
ever, an extensive data analysis of this ratio
(Ross 1999) found that if is nearly constant, for
practical purposes, over a range of tempera-
tures. Assuming that the expected value of this
ratio is constant, not dependent on tempera-
ture, Eqns (4), (7) and (8) can be used to define
a model for predicting the relative growth fora
given temperature. To complete the identifica-
tion of the model, random error terms, or
factors, need to be defined. For a given experi-
ment, it is assumed that p and A are constants.
However, betwesn experiments, these para-
meters may not be identical, but differ by
small, random, amounts. Thus, as discussed in
the Introduction, it is assumed that the para-
meters identified in Egns (7) and (8} are not
constants but random variables with given ex-
pected values and variances. The within-ex-
periment variance of an estimated parameter
is calculated from the regression of Eqn {4}, by
using the linear terms of the Taylor series ex-
pansion of Egn (7) or (8), and the variance ma-
trix of the estimated parameters from the
regression (Rao 1973). The between-experiment
variance for the standard approach is esti-
mated from an analysis of the variance,

For the alternative approach, the parameters
are estimated directly from the mixed effects
model. It is assumed that, for a given estimate
at time, ¢, of the cfu ml ™Y, n(d), logo{n(t)) is mea-
sured with error, g, that has expected value
equal to zero and standard deviation equal to
o. For Eqn {7}, it is assumed that In{egr) has be-
tween experimental error £, with expected va-
lue equal to zero, and standard deviation egqual

to oy, and similarly for Eqn (7), it is assumed
that logp{Rat) has between experimental error
g9, with expected value equal to zero, and stan-
dard deviation equal to o5, In addition, it is as-
sumed that g; and g5 have covariance, os. In
the Results section, it is shown that the ex-
pected vahue of logye(Rat) can be assumed not
to be dependent upon temperature, so that the
system of equations

—At ITH

pe™ + de
I ) =ng-+1 e | 4 g,
ogoln(t)) ng( b )

In{w(T)) = In(ln(10)) + 2In{a) + 2In(T — Trp)
+in [1 - eb(T"Tm)} + &5,

logyq [E!%%‘/ﬂ] =k + &,

E(g;) =0, var(s;) = o},

i=0, 172,COV(81= 52) =01 Eqn (9)
defines the model. The above system identifies
the primary parameters: @, b, Tin, Tgax, & 05
j=0,1, 2, and o5, that describe the model; the
parameters, ng, are nuisance parameters. All
these parameters are estimated using the
nonlinear regression, with mixed effects
procedure (PROC NLMIXED) of SAS® for win-
dows, release 800, The procedure of estimation
is based on a maximum Likelihood estimation
{MLE) procedure of the marginal distribution
of the dependent variable (Lindstrom and
Bates 1990, Wolfinger, SAS¥®). Consequently,
variance estimates would be slightly negatively
hiased (in a similar fashion that a MLE of a po-
pulation variance is equal to the sample var-
iance divided by the number of samples, s*/n,
whereas the unbiased estimate iz s?/(n—1}).
Statistical analyses were performed using
SASY for windows, release 800; figures were
created using Microsoft® Excel 97 SR-21 and
5-Plus® 2000 release 3, and some calculations
were performed using Mathcad®7 Profes-
stonal, Nonlinear regressions, other than the
mixed effect model, were performed on SAS®
using the procedure PROC MODEL; when
parameters from more than one equation were
being estimated, the seemingly unrelated re-
gression (SUR) option was used, otherwise
the ordinary least-squares option was selected
The SUR option accounts for the correlation:

R7177-06



Predictive model for growth of Clostridium perfringens

. L —3
_—
15
g, 10
2
®
3
£
5 —
D -
T T T 1
3 8 13 18
Time {h)

Figure 1. Plots of observed common logarithmic levels of C. perfringens vs time (h) and estimated

complete growth curves, for temperature = 40-6°C.

that exist among the dependent variables that
are used in defining the secondary model
equations.

Results
Primary mode!

For the temperatures 10°C, 12°C, 21-1°C and
23-9°C very little growth was observed; for the
latter two temperatures, it appears that the
measurement times selected were not sufficient
to observe growth. Growth curves for these
three temperatures were not estimated. At
19°C, growth was observed but there was no
discernable lag period and only one observed
data point between the lag and stationary
phases, Thus, for 19°C, growth curves were not
estimated. At 29-4°C, also a linear portion of
the curves could not be clearly identified, thus
growth curves for these data were also not esti-
mated. Growth curves were estimated for each
replicate at the nine remaining temperatures
(for a total of 20 curves: two replicates for all
temperatures except for 35°C and 37-8°C where

there were three replicates), The funection given
in Eqn (4) applies for cells in the lag and expo-
nential phases of growth. Thus, data ohserva-
tions which appeared to be representing cells
in stationary phase were deleted. In most of
the curves, these data were not clearly identifi-
able as on the linear portion of the growth
curve. An exception seemed to be for the ob-
served growth curves at 40-6°C. Figure 1 repre-
sents the observed and fitted log (relative)
growth curves for 40-6°C using Eqn (6). The lin-
ear portion, beyond the lag phase, of the
growth curve for replicate 1 (observed data
marked by squares) appears to include the data
up to and including time = 7h for the second re-
plicate, the linear portion appears to include
observed data up to and including time=10h.
Including these points, the estimates of egr
from Eqn 4 are 1-14 and 0-77 logio/h for the two
replicates. Excluding the data at time = 7h for
the first replicate and time = 10 h for the second
replicate, the estimates of egr are log)o 1-25 and
0-77h7. For the second replicate, deleting the
point at time =2 h (studentized residual =2-36
when using Eqn (8)), the estimate of egr, includ.
ing the data for time =10 h, is 0-90 and, exclud-
ing this data point is 0-98. The differences

R7177-07



V. K. Juneja and H. M. Marks

between the egr values with and without the
data at time=7 and 10h are relatively small,
at least, compared to the larger difference seen
when comparing the estimates for the second
replicate with and without the data at
time=2h. In the estimates given below, the
data at time=7h for the first replicate
and time=10h for the second replicate are
included.

Table 1 presents the estimated exponential
growth rate, egr, and lagTime using Eqns (4)
and (5), the generation time, and common
logarithm of the ratio of lagTime to the genera-
tion time, loge{Rat), and its standard
error, R?s were generally greater than approxi-
mately 0-95, with a few exceptions that
were caused by unusual patterns of results.
Of interest are the results for the second
replicate at temperature 40-6°C. Using all
the data, the standard error of the logo(Rat)
is 1-51, but when the data point at time=2h
is deleted the standard error is reduced to
(-35. Consequently, in subsequent analyses,
the results used are those obtained when
deleting data at time=2h. Figure 2 depicts

the measured levels (logig(cfu g7')) and
fitted curves using Eqn (4) for each tempera-
ture studied from 156 to 48-9°C, except
for those listed above. The assumed stationary
phase points excluded from the analysis can
be identified from the graphs of Fig 2 as
the ones that do not have a predicted curve
passing by them,

Secondary models

Figure 3 is a scatterplot of the square root of
the exponential growth rate, egr, vs tempera-
ture, together with the fitted Ratkowsky func-
tion (Egn (7)). For the highest temperature
studied (48-9°C), there was substantial growth,
so that this high temperature does not provide
an approximation to the T, parameter of Eqn
(8). From a study of the relative growth of C. per-
fringens in broth (Juneja et al, 1999), an esti-
mate of T, was 51°C., For determining the
parameter values of the Ratkowsky curve, thus,
it was assumed that T, =51°C. The other esti-
mated parameter values (with standard errors)

Table 1. Summary statistics of fitted curves, egr, the exponential growth rate, lag time, generation time
(h) and the logy of the ratio of lag time to the generation time, and asymptotic standard error of logyg of the

ratio
Temp. (°C) egr (logiph™") lag time (h) Generation logiy(lag gen™1) std error logy
16-6 0-01 149-9 22-22 0-83 0-33
15-6 0:02 139-9 15-83 0-95 0-35
267 0-42 16-67 0-72 1-36 015
267 0:22 10-54 1-36 0-89 0-05
32-2 0-45 2-25 0-67 0-53 0-32
32-2 0-34 4-40 0-88 0-70 014
36-0 1-20 3-79 025 118 0-17
35-0 0:67 1-59 0-45 0-565 0-30
35-0 0-70 2.46 0-43 0-76 0-10
37-8 1-00 212 0-30 0-85 0-17
318 1-08 1.28 0-28 0-66 0-11
378 0-41 3.02 0-74 0-61 0-20
40-6 114 0-88 0-27 0-52 0-23
40-6 0-77 0-36 0-39 -0-03 1:51
40-62 0-90 1-36 0-34 0-61 0-35
43-3 1-05 367 0:29 1-09 0-10
43-3 0-83 0-70 0-36 0-29 0-31
46-1 1-37 4:21 022 1-28 0-28
46-1 0-99 2-09 0-30 0-84 0-21
48-9 043 116 0-70 0-22 0-44
43-9 0-66 2-78 0-45 0-79 0-24

2Second replicate at 40-6°C excluding observation at time=2h. These results are used in subsequent

analysis.
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Figure 2. Plots of observed common logarithmic levels of C. perfringens vs time (h) and estimated growth
curves, up to and including exponential phase, for studied temperatures.
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Table 2. Estimates of parameters for growth model® using primary and secondary models (the standard
approach, using seemingly unrelated regression for the secondary model) and nonlinear mixed effects of
MLE procedure where the natural log of the observed relative growth is the dependent variable

Parameter Standard approach Nonlinear mixed effect
a 0-0366(0-0023) 0-0358(0-0019)

b 0-217(0-056) 0-201(0-041)

Tnin 12-8(0-398) 12-3(0-354)
logio(Rat) 0-783(0-068) 0-760(0-062)
of,lnegr 0-0367(0-0156)° 0-0348(0-0154)

o7, og(Rat) 0-0313(0-0102)° 0-0266(0-0160)

o? 0-175¢ 0-208(0-0270)

res

2Parameter values are defined in Eqn (9). The parameters, a, b, and Ty, are those used in a Ratkowsky equa-
tion for the exponential growth rate: egr = a(T—Tin)[1— exp(b(T—51°C))]?%. The parameter Rat is the ratio
of the lag time to the generation time. The parameters: 6Zyinegr, 0%blog(Rat) Tefer to between experiment var-
iances for the In(egr) and logio(Rat), and 62, refers to the variance of the residuals.

bStandard error based on chi-square approximation with 11 degrees of freedom.

cStandard error based on chi-square approximation with 19 degrees of freedom.

dPooled from individual regressions (115 degress of freedom).
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Figure 4. Plot of common log of ratio of lag time to generation time and linear regression line for
temperatures.

are given in Table 2. The mean square error
(MSE) of the residuals is 0-1037,

Figure 4 is a scatterplot of the estimated
values of log;o(Rat) vs temperatures together
with the linear regression line, the slope
of which is not significant (P-value=0-26).

An analysis of variance of the log ratio values
did not indicate a statistical significant
temperature effect (P-value =0-48). The distri-
bution of the log ratio values (assuming no
temperature effect) is approximately normal
(Pvalues for various tests for normality
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>{-15), with mean, m, of 0-783 (corresponding
geometric mean of about 6-07) and standard
deviation, s, of 0-305. Thus, the standard
error of the mean, m, is 0-0682. The lower
90% confidence limit of the geometric mean
is 49, and the upper 80% confidence limit
s 75,

The above analysis determines the expected
values of the parameters defined by Egns (7)
and (8). To completely characterize the model,
it is necessary to determine if these para-
meters can be considered constants for any
cooling event or experiment with the same con-
ditions, or rather as random variables with ex-
pected values given by the Eqns (7) and (8) and
non-zero standard deviations and correlations.
To dothis, analyses of variances are performed.
For In(egr), the between-experiment variance,
“gmegr’ calculated by subtracting the within-
experiment variance from the within-tempera-
ture mean square error is estimated to be 0-037,
which, based on 11 degrees of freedom, 1s signif
icantly greater than zero, at the 0-15 signifi-
cance level. An estimate of the coefficient of
variation, CV, of egr can be approximated as
100% times Opinesr, Which is equal to about
19%. ¥or logyp(Rat) ignoring temperature and
replication factors, an estimate of the between
experiment variance, oL, o of approxi-
mately 0-031 i1s derived. This implies that the
CVof Rat is about twice that of egr.

As a comparison, a nonlinear mixed effect
model is used to estimate the parameters
identified in Eqn (@) For all experiments,
the dependent variable was the log of the rela-
tive growth, obtained by subtracting the
observed value at time =0 from the other ob-
served values. The parameter ny was thus con-
sidered to be a constant, and would cantribute
to the residual error of the model. For the full
model defined in Egn (9), the covariance term,
o1, was not significantly different from zero,
and thus in the final model was assumed to
be zero. The estimated parameters and stan-
dard errors are given in Table 2. These
estimates are very close to the ones derived by
the standard approach. It should be pointed
out that the correlations of the estimates
of the variances: cﬁlmgr, o o(Rayy With the esi':i-
mates of the other parameters are small in
absolute value.

Predictive model for growth of Clostridium perfringens

Discussion

The equations developed above apply for arhi-
trary, but fixed temperatures. As discussed in
Juneja et al, (2001), applying equations devel-
oped for fixed temperatures when tempera-
tures are changing could be problematic,
Research (Zwietering et al. 1994} shows that
the lag time can increase over that expected
at a given temperature, after adjusting for the
time spent in lag at a prior temperature. This is
interpreted to mean that A(#), the infinitegimal
cell death’rate of ariginal O cells and becoming
D cells, can decrease when the cells experience
a temperature change, That is, the lag phase
times would not decrease proportionally over
tame as the temperature changes. For purposes
of investigating the effect of femperature
changes on the growth curve, a simple assump-
tion that A(f) is proportional to the exponential
cooling rate, k(t) could be considered (Juneja
et al. 2001), Thus, a possible model could assume
that, for a given exponential cooling rate, k, the
infinitesimal death rate of original cells is
given

Ma(8) = M) Eqn (10)
where p, is a decreasing function of k, such that
po=1and pe =o >0 Growth curves could be
determined for different constant exponential
rates of temperature change to explore the
relationship of p,. as a function of 2 and to eval-
uate if the above model can provide approxi-
mate estimates of relative growth for constant
exponential rates of temperature change. Re-
search to do this is being planned,

Equation (2) is used, assuming that p; =1, for
calculating the relative growth for a hypotheti-
cal cooling of product from 51°C to 12°C in
t; hours, where temperature, 1, at time ¢, is
given by

g(t) = (T, — T)e ™ + T.. Eqn{11)
T is the initial temperature of the product, T,
ig the ambient air temperature (here assumed
equal to 0°C), and v is the exponential cooling
rate. As discussed in the Introduction section,
the variance of the predicted logy relative
growth is expressed as a sum of the variance
of the expected value plus the expected
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value of the variance due to the variation of the
defined parameters, The former variance is cal-
culated by expressing the logg relative growth
as a function of the parameters: &, &, Tiin, and 2
of Eqn (9), and using thelinear terms of a Taylor
series expansion with respect to these
parameters and their covariance matrix. The
square root of this variance is the standard er-
ror of the prediction. The variance due to the
variation of the defined parameters is calcu-
lated by expressing the logy relative growth
as a function of i and £, and linearizing using
the Taylor series. The square root of the sum of
the two variances is the standard deviation of
the prediction, and can be used to create prob-
ability intervals for predicted amounts of
growth for a given cooling event.

A word needs to be said about caleulating
the standard deviation, as described in the pre-
vious paragraph, from Egn (2). Since k is as-
sumed to be constant, it is a straightforward
matter to compute the partial derivative with
respect to k and use it to approximate the var-
iance. However, the exponential growth rates,
p, are not constant as the temperature
changes, and thus, in actuality, the partial de-
rivative that is desired is with respect to the
function p(z). However, it is assumed the var-
ianece of the error associated with In(y) 1s the
same for all temperatures, so that for a given
cooling event, or cooling scenario, it is reason-
able to assume that p(f) =npo(t), where m 1s a
random variable, such that E(ln(n))=0 and
var(n(n)}) = 6%unegr  and  E{In(u()) =In(polt))
for all ¢ Thus, for calculating the variance,
Eqn (2) can be expressed as a function of 2 and
7, and the partial derivatives used to approxi-
mate the variance are with respect to the ran-
dom variables k and i, where it is assumed that

the variance of & i8 0%yiograt) and that of In(n) is
OPhinegr, and their correlation is zero.

Table 8 provides the predicted common loga-
rithm of the expected relative growth from Fgn
(2), for ¢, =6, 8 and 10 h, the standard error, and
the standard deviations for the two approaches
of estimating the parameters. As can be seen
from this table, the predictions and their mea-
sures of variability are similar for the two ap-
proaches of estimation. The standard errors
are sufficiently small to enable construction of
confidence intervals for the expected log of the
relative growth, or the geometric mean of rela-
tive growth, for a given cooling scenario. Thus,
for example, at 8h, using the standard ap-
proach, the geometric mean relative growth is
estimated to be 9-4, with 90% confidence inter-
val, based on 17 degrees of freedom, of (1-33,
21-3). On the other hand, the standard devia-
tions are comparable to the predicted geo-
metric mean values, suggesting that the
possible range of the amount of growth is large
for a particular cooling event, For example, if it
is assumed that the distribution is lognormal,
then, for the 8h cooling, a 90% probability in-
terval for the relative growth is (0-32, 276). For
6h, a 90% probability interval is (029, 24}, For
the 8 h cooling event, 66% of the variance is due
to the variation in %, for 6h, the percentage is
T7%, and for 10 h, it is 56%. Since the lag phase
duration would be more influential to the pre-
dicted amount of growth for small times, it is
expected that the percentage would be a de-
creasing function of time.

A similar study as this one was conducted for
cured beef (Juneja et al. 2001}, Figure 5 pre-
sents the fitted curves from Eqn (7) of the
square root of the egr vs temperature for the
two studies. Both curves reach maximum levels

Table 3. Predicted common logarithm of expected relative growth of C. perfringens in cured chicken
when cooled, log linearly, from 51°C to 12°C in 6, 8 and 10}, the standard error of these predictions, and the
standard deviation of predictions taking into account the between experiment variability of the growth

characteristics
Hours Standard approach Mixed effects model
Predicted 8.2, s.d. Predicted s.e s.d.
6 0-424 0-142 0-550 0-398 0-137 0-473
8 0-973 0-205 0-844 0-899 0-202 0-739
10 163 {234 100 1-51 0-232 0-891
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Figure 5. Plot of Ratkowsky curves derived for cured beef (Juneja et al. 2002) and cured chicken from this
study.

of about 1 at near or slightly above 40°C; the
minimum temperatures for both curves are
about 11-12°C. For practical purposes, the two
curves are nearly identical, However, the esti-
mated geometric means of the ratios of the lag
times to the generation times (Eqn (8)) are dif-
ferent: where, in the study on cured beef, the
geometric mean was estimated to be 8-1, com-
pared to the 6-1 value estimated in the cured
chicken study. Using the data from the two
studies, the statistical significance of the dif-
ference between these two estimates has a
two-sided Pwvalue of (18, suggesting that
the estimated difference might not reflect
a true difference between the lag phase times
for the two products.

Conclusion

The present study has assessed the growth of
C. perfringens from spores inocula, in chicken
supplemented with curing salts, when
the chicken was cooked slowly to 80°C and
then cooled rapidly to a specified temperature.
Under these conditions, the growth of
C. perfringens from spores in a period of 21 days

at 10°C and 12°C was not observed. These
ohservations are in agreement with previous
studies: Geopfert and Kim (1975) reported
that C. perfringens growth does not begin in
foods stored at 15°C or helow, even after
extended storage. However, this may not hold
true when hot foods are cooled and the
rate of cooling is not sufficiently fast. Solberg
and Elkind (1970) reported that C. perfringens
vegetative cells increased by 3 log cycles
in 3 days at 15°C and in 5 days at 12°C
but growth was restricted at 10 and 5°C. It
is possible that growth kinetics at other
temperatures would also be affected by the rate
of cooling.

The assumptions that the infinitesimal
cell death rates of O cells over time are
constant, and that the cells that leave
the GOL phase have the ‘same’ growth charac-
teristics as new offspring cells may not be
innocuous. For the latter concern, it might
be that the developmental events leading
to a cell leaving the GOL phase and the
events needed for cell division are operating
closer in parallel rather than in series or
sequentially, as was assumed for the model
used in this paper. The consequence, of course,
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is that the microbiclogical interpretation of
the models parameters is questioned, even
though the model provides an adequate fit
of ohserved data. The types of experiments
needed to teat these types of hypotheses would
involve many obgervations near the estimated
times where the cells would be leaving GOL
phase, and perhaps microscopic examination
of the cells.

This paper presents a model for predicting
small-to-moderate relative growth of C. perfrin-
gens during cooling of certain cooked cured
chicken products, which is assumed not to be
dependent upon the initial levels of the popula-
tion when between 10 and 10* efu g . Rather
than assuming that the parameters that de-
scribe growth kinetics are constant for a given
temperature, it is assumed that they are ran-
dom variables with expected values and stan-
dard deviations for a given cooling event.
Estimates of the parameters were made by
two procedures: the standard two-stage ap-
proach that is commonly used in predictive mi-
crobiology, and a nonlinear mixed effects
procedure, based on a system of equations with
the observed plate counts as the dependent
varigble. The standard procedure involved
using SUR regression procedures and analyses
of variances. The derived estimates of the two
procedures were very close. The similarity
would favor using the nonlinear mixed effects
procedures because of its simplicity when used
in software systems such as S-Plus® and SAS®,
However, the standard approach allows the
analyst to examine the data more closely, get-
ting a better ‘feel’ for the data. We recommend
that nonlinear mixed effects analyses be used
because these account for the correlations that
exist in microbiological data of the type in this
study, but that such analyses be accompanied
by a less formal data analyses that are used in
the two-stage approach to help formulate the
model.

Finally, the predictions are sensitive to
an assumed value for the ratio of the lag to
generation times; the between-experimental
variability associated with this statistic is
relatively large compared to that of the
exponential growth rate. More research is
needed to obtain better understanding of this
ratio.
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